Extracellular vesicles (EVs) are efficient natural vehicles for intercellular communication and are under extensive investigation for the delivery of diverse therapeutics including small molecule drugs, nucleic acids, and proteins. To understand the mechanisms behind the biological activities of EVs and develop EV therapeutics, it's funda-mental to track EVs and engineer EVs in a customized manner. In this study, we identified, using single-vesicle flow cytometry and microscopy, the lipid DOPE (dioleoyl phosphatidyl ethanolamine) as an efficient anchor for isolated EVs. Notably, DOPE associated with EVs quickly, and the products remained stable under several challenging conditions. Moreover, conjugating fluorophores, receptor-targeting peptides or albumin-binding molecules with DOPE enabled tracking the cellular uptake, enhanceing the cellular uptake or extending the circulation time in mice of engineered EVs , respectively. Taken together, this study reports an efficient lipid anchor for exogenous engineering of EVs and further showcases its versatility for the functionalization of EVs.
Surface display of functional moieties on extracellular vesicles using lipid anchors
Barone A.;
2023-01-01
Abstract
Extracellular vesicles (EVs) are efficient natural vehicles for intercellular communication and are under extensive investigation for the delivery of diverse therapeutics including small molecule drugs, nucleic acids, and proteins. To understand the mechanisms behind the biological activities of EVs and develop EV therapeutics, it's funda-mental to track EVs and engineer EVs in a customized manner. In this study, we identified, using single-vesicle flow cytometry and microscopy, the lipid DOPE (dioleoyl phosphatidyl ethanolamine) as an efficient anchor for isolated EVs. Notably, DOPE associated with EVs quickly, and the products remained stable under several challenging conditions. Moreover, conjugating fluorophores, receptor-targeting peptides or albumin-binding molecules with DOPE enabled tracking the cellular uptake, enhanceing the cellular uptake or extending the circulation time in mice of engineered EVs , respectively. Taken together, this study reports an efficient lipid anchor for exogenous engineering of EVs and further showcases its versatility for the functionalization of EVs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.