PURPOSE: Over the last decade, the use of ultrasound as a technique to look for pneumothorax has rapidly evolved. This review aims to analyze and synthesize current knowledge on lung ultrasound targeted at the diagnosis of pneumothorax. The technique and its usefulness in different scenarios are explained, and its merits over conventional radiology are highlighted. METHODS: A systematic literature search (1995-2010) was performed, involving PubMed, to describe the more recent scientific evidence on the topic. Moreover, this review is also a synopsis of experts' opinion and personal clinical experience. RESULTS AND CONCLUSIONS: Ultrasound diagnosis of pneumothorax relies on the recognition of four sonographic artifact signs: the lung sliding, the B lines, the lung point, and the lung pulse. Combining these few signs, it is possible to accurately rule in or rule out pneumothorax at the bedside in several different clinical scenarios. Sensitivity of a lung ultrasound in the detection of pneumothorax is higher than that of conventional anterior-posterior chest radiography, and similar to that of computerized tomography. A major benefit of a lung ultrasound is that it can be used quickly to diagnose pneumothorax at the bedside in any critical situation, like cardiac arrest and hemodynamically unstable patients. Moreover, it can be used to detect radio-occult pneumothorax and to quantify the extension of the air layer. Advantages in terms of reduced complexity, feasibility at the bedside, and absence of exposure to ionizing radiation make lung ultrasound the method of choice in several common clinical situations.

Sonographic diagnosis of pneumothorax

Volpicelli G
2011-01-01

Abstract

PURPOSE: Over the last decade, the use of ultrasound as a technique to look for pneumothorax has rapidly evolved. This review aims to analyze and synthesize current knowledge on lung ultrasound targeted at the diagnosis of pneumothorax. The technique and its usefulness in different scenarios are explained, and its merits over conventional radiology are highlighted. METHODS: A systematic literature search (1995-2010) was performed, involving PubMed, to describe the more recent scientific evidence on the topic. Moreover, this review is also a synopsis of experts' opinion and personal clinical experience. RESULTS AND CONCLUSIONS: Ultrasound diagnosis of pneumothorax relies on the recognition of four sonographic artifact signs: the lung sliding, the B lines, the lung point, and the lung pulse. Combining these few signs, it is possible to accurately rule in or rule out pneumothorax at the bedside in several different clinical scenarios. Sensitivity of a lung ultrasound in the detection of pneumothorax is higher than that of conventional anterior-posterior chest radiography, and similar to that of computerized tomography. A major benefit of a lung ultrasound is that it can be used quickly to diagnose pneumothorax at the bedside in any critical situation, like cardiac arrest and hemodynamically unstable patients. Moreover, it can be used to detect radio-occult pneumothorax and to quantify the extension of the air layer. Advantages in terms of reduced complexity, feasibility at the bedside, and absence of exposure to ionizing radiation make lung ultrasound the method of choice in several common clinical situations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/90363
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 244
  • ???jsp.display-item.citation.isi??? 200
social impact