: Splenic hematopoiesis is a major feature in the course of myelofibrosis (MF). In fact, the spleen of patients with MF contains malignant hematopoietic stem cells retaining a complete differentiation program, suggesting both a pivotal role of the spleen in maintaining the disease and a tight regulation of hematopoiesis by the splenic microenvironment, in particular by mesenchymal stromal cells (MSCs). Little is known about splenic MSCs (Sp-MSCs), both in normal and in pathological context. In this work, we have in vitro expanded and characterized Sp-MSCs from 25 patients with MF and 13 healthy subjects (HS). They shared similar phenotype, growth kinetics, and differentiation capacity. However, MF Sp-MSCs expressed significant lower levels of nestin, and favored megakaryocyte (Mk) differentiation in vitro at a larger extent than their normal counterpart. Moreover, they showed a significant upregulation of matrix metalloprotease 2 (MMP2) and fibronectin 1 (FN1) genes both at mRNA expression and at protein level, and, finally, developed genetic abnormalities which were never detected in HS-derived Sp-MSCs. Our data point toward the existence of a defective splenic niche in patients with MF that could be responsible of some pathological features of the disease, including the increased trafficking of CD34+ cells and the expansion of the megakaryocytic lineage.

The spleen of patients with myelofibrosis harbors defective mesenchymal stromal cells

Abbonante, Vittorio;
2018-01-01

Abstract

: Splenic hematopoiesis is a major feature in the course of myelofibrosis (MF). In fact, the spleen of patients with MF contains malignant hematopoietic stem cells retaining a complete differentiation program, suggesting both a pivotal role of the spleen in maintaining the disease and a tight regulation of hematopoiesis by the splenic microenvironment, in particular by mesenchymal stromal cells (MSCs). Little is known about splenic MSCs (Sp-MSCs), both in normal and in pathological context. In this work, we have in vitro expanded and characterized Sp-MSCs from 25 patients with MF and 13 healthy subjects (HS). They shared similar phenotype, growth kinetics, and differentiation capacity. However, MF Sp-MSCs expressed significant lower levels of nestin, and favored megakaryocyte (Mk) differentiation in vitro at a larger extent than their normal counterpart. Moreover, they showed a significant upregulation of matrix metalloprotease 2 (MMP2) and fibronectin 1 (FN1) genes both at mRNA expression and at protein level, and, finally, developed genetic abnormalities which were never detected in HS-derived Sp-MSCs. Our data point toward the existence of a defective splenic niche in patients with MF that could be responsible of some pathological features of the disease, including the increased trafficking of CD34+ cells and the expansion of the megakaryocytic lineage.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/93789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 2
social impact