Introduction: The advent of targeted therapies and immune checkpoints inhibitors has enhanced the treatment of metastatic melanomas. Despite striking improvements of patients' survival, drug resistance continues to limit the efficacy of such treatments. Genetic and nongenetic/adaptive mechanisms of resistance could be involved; in the latter mechanism, noncoding RNAs (ncRNAs) are emerging as key players. Areas covered: This article outlines the current knowledge of ncRNA involvement in BRAF-mutant melanomas and the development of resistance to targeted/immunotherapies. We also discuss how ncRNAs can be exploited for the development of therapeutic and diagnostic approaches. Expert opinion: ncRNAs can be envisaged as powerful diagnostics and therapeutics. Despite progress in our knowledge about their deregulation in cancer, it is still difficult to derive universal and robust ncRNAs unique signatures of malignancy for diagnostic purposes, which need validation in large cohort of patients. Also, ncRNA specific targeting to melanoma cells in vivo requires the development of improved systemic delivery tools. In this regard, the development of stable nanodelivery particles seems to offer renewed hope for success in the clinic.
The potential of BRAF-associated non-coding RNA as a therapeutic target in melanoma
Ciliberto G
2019-01-01
Abstract
Introduction: The advent of targeted therapies and immune checkpoints inhibitors has enhanced the treatment of metastatic melanomas. Despite striking improvements of patients' survival, drug resistance continues to limit the efficacy of such treatments. Genetic and nongenetic/adaptive mechanisms of resistance could be involved; in the latter mechanism, noncoding RNAs (ncRNAs) are emerging as key players. Areas covered: This article outlines the current knowledge of ncRNA involvement in BRAF-mutant melanomas and the development of resistance to targeted/immunotherapies. We also discuss how ncRNAs can be exploited for the development of therapeutic and diagnostic approaches. Expert opinion: ncRNAs can be envisaged as powerful diagnostics and therapeutics. Despite progress in our knowledge about their deregulation in cancer, it is still difficult to derive universal and robust ncRNAs unique signatures of malignancy for diagnostic purposes, which need validation in large cohort of patients. Also, ncRNA specific targeting to melanoma cells in vivo requires the development of improved systemic delivery tools. In this regard, the development of stable nanodelivery particles seems to offer renewed hope for success in the clinic.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.