In this review, the functional interactions between serotonin (5-HT) and dopamine (DA) neuronal systems are discussed with the focus on microdialysis studies in the rodent brain (mainly rats). 5-HT by itself is involved both directly and indirectly via actions on complex neuronal circuitry, in the regulation of DA release through multiple 5-HT receptors, playing a critical role in the development of normal and abnormal behaviours. Recent evidence suggests that dysfunction of dopaminergic and serotoninergic neurotransmitter systems contributes to various disorders including depression, schizophrenia, Parkinson's disease and drug abuse. Here we summarize recent neurochemical works that have extensively explored the role of 5-HT receptors in the control of DA central systems in both basal and drug-induced conditions, using in vivo microdialytic techniques. Several 5-HT receptor subtypes, including the 5-HT1A, 5-HT1B, 5-HT2A, 5-HT3 and 5-HT4 receptors, act to facilitate DA release, while the 5-HT2C receptor mediates an inhibitory effect of 5-HT on DA release. Taken together, neurochemical approaches using microdialysis can not only contribute to clarification of the physiological role of the serotonergic neuronal systems but may also be a powerful pharmacological approach for the development of therapeutic strategies to the treatment of depression, schizophrenia, Parkinson's disease and drug abuse. © 2008 Elsevier B.V. All rights reserved.

Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies

Di Giovanni G.;
2008-01-01

Abstract

In this review, the functional interactions between serotonin (5-HT) and dopamine (DA) neuronal systems are discussed with the focus on microdialysis studies in the rodent brain (mainly rats). 5-HT by itself is involved both directly and indirectly via actions on complex neuronal circuitry, in the regulation of DA release through multiple 5-HT receptors, playing a critical role in the development of normal and abnormal behaviours. Recent evidence suggests that dysfunction of dopaminergic and serotoninergic neurotransmitter systems contributes to various disorders including depression, schizophrenia, Parkinson's disease and drug abuse. Here we summarize recent neurochemical works that have extensively explored the role of 5-HT receptors in the control of DA central systems in both basal and drug-induced conditions, using in vivo microdialytic techniques. Several 5-HT receptor subtypes, including the 5-HT1A, 5-HT1B, 5-HT2A, 5-HT3 and 5-HT4 receptors, act to facilitate DA release, while the 5-HT2C receptor mediates an inhibitory effect of 5-HT on DA release. Taken together, neurochemical approaches using microdialysis can not only contribute to clarification of the physiological role of the serotonergic neuronal systems but may also be a powerful pharmacological approach for the development of therapeutic strategies to the treatment of depression, schizophrenia, Parkinson's disease and drug abuse. © 2008 Elsevier B.V. All rights reserved.
2008
5-HT receptors
antidepressants
antipsychotics
dopaminergic function
drug addiction
mesocorticolimbic system
microdialysis
nigrostriatal system
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/97298
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 137
  • ???jsp.display-item.citation.isi??? ND
social impact