We have chosen to study the effects of both nitric oxide (NO) and cholecystokinin neuromodulatory systems in some motor structures that are frequently involved in excitotoxic phenomena. In particular, 7-nitroindazole, a selective inhibitor of neuronal NO synthase, was administered in control and sulfated cholecystokinin octapeptide-treated rats. Cortical surface, striatal and pallidal depth bioelectric activities were examined through Fast Fourier Transform analysis. Cortical and pallidal recordings revealed an increase of rapid standard rhythms after the inhibition of neuronal NO synthase; in contrast, striatal depth recordings showed a marked increase of slow standard rhythms. All these effects were completely abolished by chronic pre-treatment with sulfated cholecystokinin octapeptide. The results suggest a functional co-operation between cholecystokinin and NO systems in the modulation of the bioelectric activity of all the motor structures examined, and the possibility of preventing excitotoxic damages induced by an anomalous balance between excitatory and inhibitory neurotransmitters in these areas. © 2003 Elsevier Inc. All rights reserved.

CCK-nitric oxide interaction in rat cortex, striatum and pallidum

Di Giovanni G.;
2003-01-01

Abstract

We have chosen to study the effects of both nitric oxide (NO) and cholecystokinin neuromodulatory systems in some motor structures that are frequently involved in excitotoxic phenomena. In particular, 7-nitroindazole, a selective inhibitor of neuronal NO synthase, was administered in control and sulfated cholecystokinin octapeptide-treated rats. Cortical surface, striatal and pallidal depth bioelectric activities were examined through Fast Fourier Transform analysis. Cortical and pallidal recordings revealed an increase of rapid standard rhythms after the inhibition of neuronal NO synthase; in contrast, striatal depth recordings showed a marked increase of slow standard rhythms. All these effects were completely abolished by chronic pre-treatment with sulfated cholecystokinin octapeptide. The results suggest a functional co-operation between cholecystokinin and NO systems in the modulation of the bioelectric activity of all the motor structures examined, and the possibility of preventing excitotoxic damages induced by an anomalous balance between excitatory and inhibitory neurotransmitters in these areas. © 2003 Elsevier Inc. All rights reserved.
2003
Depth EEG
Motor structures
Neuroprotection
Neurotoxicity
Surface EEG
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/97307
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact