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Abstract
External-beam radiotherapy followed by high dose rate (HDR) brachytherapy is the standard-
of-care for treating gynecologic cancers. The enhanced soft-tissue contrast provided by magnetic 
resonance imaging (MRI) makes it a valuable imaging modality for diagnosing and treating these 
cancers. However, in contrast to computed tomography (CT) imaging, the appearance of the 
brachytherapy catheters, through which radiation sources are inserted to reach the cancerous tissue 
later on, is often variable across images. This paper reports, for the first time, a new deep-learning-
based method for fully automatic segmentation of multiple closely spaced brachytherapy catheters in 
intraoperative MRI.

Represented in the data are 50 gynecologic cancer patients treated by MRI-guided HDR 
brachytherapy. For each patient, a single intraoperative MRI was used. 826 catheters in the images 
were manually segmented by an expert radiation physicist who is also a trained radiation oncologist. 
The number of catheters in a patient ranged between 10 and 35. A deep 3D convolutional neural 
network (CNN) model was developed and trained. In order to make the learning process more 
robust, the network was trained 5 times, each time using a different combination of shown patients. 
Finally, each test case was processed by the five networks and the final segmentation was generated 
by voting on the obtained five candidate segmentations. 4-fold validation was executed and all the 
patients were segmented.

An average distance error of 2.0  ±  3.4 mm was achieved. False positive and false negative catheters 
were 6.7% and 1.5% respectively. Average Dice score was equal to 0.60  ±  0.17. The algorithm is 
available for use in the open source software platform 3D Slicer allowing for wide scale testing and 
research discussion. In conclusion, to the best of our knowledge, fully automatic segmentation of 
multiple closely spaced catheters from intraoperative MR images was achieved for the first time in 
gynecological brachytherapy.
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Introduction

Gynecologic (GYN) malignancies, which include cervical, endometrial, ovarian, vaginal and vulvar cancers, 
cause significant mortality in women worldwide. According to an estimation, in the U.S., approximately 110 070 
women developed gynecologic cancer in 2018, and over 30% died from the disease (American Cancer Society 
2018). The standard-of-care treatment for many primary and recurrent gynecologic cancers consists of external-
beam radiation followed by high dose rate (HDR) brachytherapy (Viswanathan et  al 2012). In contrast to 
external-beam radiation treatment, in which a linear accelerator aims radiation beams at the pelvis from outside 
the body, in HDR brachytherapy, radioactive sources, that deliver very high doses of radiation (typically in 
the range of 80–90 Gray for cervical cancer), are placed directly inside the cancerous tissue using intracavitary 
or interstitial catheters. The use of imaging to assist gynecologic brachytherapy treatment planning and dose 
delivery has evolved from two-dimensional (2D) plain x-ray radiographs or ultrasound (US) images to three-
dimensional (3D) volumes, including those generated by computed tomography (CT) and magnetic resonance 
imaging (MRI) (Viswanathan et al 2011). Unlike 2D imaging, with 3D imaging, the applicator position and 
tumor may be visualized and contoured, permitting accurate placement of applicator and tailoring the radiation 
dose (Fellner et al 2001, Haie-Meder et al 2005, Pötter et al 2006).

Increasing role of MRI in gynecologic cancer treatment
MRI is used routinely in the diagnosis of cervical cancer due to the high contrast of soft tissue which allows 
differentiation between tumors of the cervix or endometrium from the normal uterus or cervix. Enhanced soft-
tissue contrast in MR imaging facilitates the contouring of tumor and organs at risk. This, in turn, facilitates 
successful image-guided radiation treatment which relies on these contours to maximize radiation dose to the 
tumor while minimizing dose to organs at risk. In a survey by the American Brachytherapy Society, the utilization 
of MRI for gynecologic brachytherapy treatment planning increased from 2% to 34% between 2007 and 2014 
(Grover et al 2016). This development has been driven primarily by the superior soft tissue contrast provided 
by MRI, and also due to the increased access, availability and familiarity of physicians with MRI. The role of 
MRI in guidance of brachytherapy applicator placement has also steadily advanced from being feasible in both 
low-field 0.5 T scanners (Dimopoulos et al 2006, Viswanathan et al 2006) and high-field 3 T scanners (Kapur 
et al 2012). MRI-guidance demonstrated improvements over CT-guidance in local control and overall survival 
rates in women with locally advanced cervical cancer (Kamran et al 2017). This technological advance has been 
implemented recently via dedicated MRI-guided gynecologic brachytherapy suites in academic hospitals all over 
the world (Viswanathan et al 2013, Anderson et al 2018).

In GYN-HDR interstitial brachytherapy, several catheters (in the investigated dataset up to 35) with tungsten 
alloy needle inlays (ProGuide Needles, Nucletron Co., Veenendaal, the Netherlands), are inserted percutaneously 
through a standardized template such as the Syed-Neblett-template (figure 1).

The template is surgically sutured to the patient’s perineum and its insertion holes are identified by 
coordinates.

After insertion, needles are removed and the hollow outer catheters are left in place to serve as channels for 
delivering radiation sources to the target tissue. Then, MR images are acquired for treatment planning. While 
the cancer and surrounding soft tissues appear rather distinctively in the MRI, the dark and diffuse appearance 
of the catheters poses a challenge for both human operators and automatic detection algorithms. Furthermore, 
the cylindrical plastic obturator, which is commonly used to stabilize the template, creates another signal void 
that renders some of the catheters on its side partially indistinguishable. Blood vessels as well can be confused 
with catheters. An example case is provided in figure 2. In the current clinical practice, a CT scan is also acquired 
since it is easier to manually identify catheters on the CT images. Then, CT and MR images are registered to 
localize catheters on MRI. This procedure is prone to mis-registration errors, extra scanning time and additional 
patient’s radiation exposure.

State-of-the-art in segmentation methods for catheters, needles, or tubular structures in images
Several approaches have been suggested in the medical image computation literature for segmenting tubular 
objects. Segmentation of tortuous and tree-like structures, such as blood vessels (Wink et al 2004, Liskowski 
and Krawiec 2016, Mastmeyer et al 2016), white matter tracts (O’Donnell and Westin 2007, Hao et al 2014) or 
nerves (Sultana et al 2017) are covered by many of the reported methods. Other methods address straight or bent 
needles or wires (Pernelle et al 2013, Hrinivich et al 2017, Mastmeyer et al 2017). Based on the clinical application, 
the proposed techniques have been applied to different image modalities including US (Aboofazeli et al 2009, 
Beigi et al 2015, Hrinivich et al 2017), CT (Görres et al 2014, Nguyen et al 2015), and MRI (Pernelle et al 2013, 
Mastmeyer et al 2017) for the purpose of localization after insertion or real-time guidance during insertion. 
Many attempts have been made to incorporate hand-crafted and kernel-based methods for detection of lines in 
images. The reported methods are often based on enhanced ideas of the 3D generalized Hough transform (Beigi 
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et al 2015, Hrinivich et al 2017), on model and ray casting based searches (Pernelle et al 2013, Mastmeyer et al 
2017), orthogonal 2D projections (Aboofazeli et al 2009), generalized radon transforms (Novotny et al 2007, 
Aboofazeli et al 2009) or RANdom Sample Consensus (RANSAC) (Uherčík et al 2010). Finally, a recent review of 
vascular segmentation algorithms is reported in Moccia et al (2018).

Artificial intelligence algorithms
Deep learning with convolutional neural networks (CNNs) have been used to solve numerous complex pattern 
recognition tasks (Goodfellow et al 2016). Deep-learning models use multiple layers of abstraction in a supervised 
training scheme to learn features, as opposed to hand-crafted feature engineering methods that are used in the 
papers described above. The investigation of deep CNNs in the recent years has generated tremendous progress 
on many computer vision tasks in medical image analysis (Litjens et al 2017). For instance, CNNs have been 
shown to achieve outstanding performances for segmentation (Ghafoorian et al 2017), localization (de Vos et al 
2017), cancer diagnosis (Mehrtash et al 2017a), quality assessment (Abdi et al 2017) and vessel segmentation 

Figure 1.  Syed-Neblett-template sutured to the patient’s perineum. The holes in the template base (panel (a)) serve as entry points 
for the brachytherapy catheters and later radiation sources targeting the lesion around the obturator shaft (panel (b)). A similar 
figure appears in Mastmeyer et al (2017).

Figure 2.  Example case of gynecologic brachytherapy intraoperative MRI. The green circle delimits the area where 35 catheters were 
placed. The red circles highlight areas containing anatomical structures (e.g. blood vessels) that appear very dark, similar to catheters 
and can be mistaken for catheters both by operator and by automatic algorithms. Purple arrow points to the center of the obturator 
shaft area.
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(Wang et al 2017, Bruno et al 2018). We recently reported the first fully 3D CNN based solution to automatically 
segment individual prostate biopsy needles from T2-weighted MRI (Mehrtash et al 2018).

In this work, in order to better support clinicians during GYN-HDR brachytherapy procedures, we propose 
a fully automatic algorithm to segment multiple catheters in intraoperative MRI. To the best of our knowledge, 
this is the first time that a fully automatic method has been reported for this task. We report accuracy levels com-
parable with the semi-automatic algorithm described in Mastmeyer et al (2017). The proposed method uses 
CNN followed by simple post-processing steps consisting of DBSCAN clustering (Ester et al 1996) and morpho-
logical operation.

Materials and methods

Clinical workflow
All procedures were performed in the advanced multimodality image-guided operating (AMIGO) suite 
(Tempany et al 2015) at Brigham and Women’s Hospital in Boston, USA. A Syed-Neblett template with 48 holes 
arranged in a concentric circles grid, with 10 mm minimum spacing between them, was sutured to the patient’s 
perineum. The obturator inserted in the vaginal canal of the patient through the large middle hole of the template 
(figure 1), and a collection of needles with plastic sheaths (catheters) was steered through the smaller holes and 
towards the lesion under MRI guidance. The plastic sheaths or catheters later served as insertion channels for the 
irradiating spot sources. Periodic intraoperative MRI served to verify if catheters were inserted into the target 
volume and to ensure that they were not puncturing the bladder, the rectum, or the sigmoid colon. The final MRI 
was acquired upon insertion of all catheters, and segmentation was performed on those MRI. This workflow was 
outlined in Viswanathan et al (2011) and Kapur et al (2012).

Data
The segmentation method was evaluated on MRI scans of 50 gynecologic cancer patients who were treated 
using a total of 826 HDR brachytherapy catheters in the AMIGO suite of Brigham and Women’s Hospital, 
Boston USA. All the MRIs in this study were acquired intraoperatively and immediately after the catheters 
were inserted. A 3 Tesla ‘Magnetom Verio’ scanner was employed (Siemens Healthcare, Erlangen, Germany) 
and the analyzed images were acquired using the 3D T2/FSE protocol (Siemens SPACE, TR/TE  =  3000/160 ms, 
0.4  ×  0.4  ×  1.0 mm3). The volume field of view was standardized with the center of the obturator in line with the 
scanner system axis and the template base included in the MR images. Catheters were 1.6 mm (16G) in diameter, 
with tungsten-alloy stylets or needles inside them. They appeared as tubular signal voids (or dark tubes) in the 
MRI and the number of catheters in a patient ranged between 10 and 35. According to the clinical protocol, CT 
images were also available for visual catheter identification.

The image analysis reported here was conducted with approval from the Institutional Review Board (IRB) 
of Brigham and Women’s Hospital. Data were shared with all the co-authors of this study also with explicit IRB 
approval.

Data annotation
In order to train and test the CNN, reference segmentations for all 826 catheters from 50 patients were manually 
performed by a radiation physicist (HZ), who is also a trained radiation oncologist, using 3D Slicer software 
(Fedorov et al 2012). These labels represented the ground truth (GT) segmentation. Segmentation was performed 
on axial slices (figures 2 and 3) starting from the proximal catheter tip, which was identified on the first slice on 
the cranial side where the catheter appeared. The distal end of each catheter was near the template base. Since a 
CT scan, with catheters clearly visible, was available for each of these data sets, the expert annotator referred to CT 
images in cases where there was ambiguity in the location of individual catheters.

Data preprocessing
Magnetic field bias correction was performed on each MR image and the volumes were resampled to a voxel 
size of 1  ×  1  ×  1 mm3. Trilinear interpolation was used for intensity images, nearest neighbor for binary label 
images. Finally, MRI intensity scale was clipped between the 1st and the 99th percentile and the resulting image 
histograms were normalized between 0 and 1.

Volume partitioning
MRI volumes were partitioned into 3D tiles, in order to overcome the problem of the limited memory of the 
available GPUs and to maximize the number of training samples.

A tile was defined as a subset of 60  ×  60  ×  60 voxels (60  ×  60  ×  60 mm3) within the whole 3D scan. Volume 
partitioning was on a regular grid and, in general, tiles did not overlap. However, since in some cases the MRI vol-
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ume was not a multiple of tile size, some tiles could partially overlap other tiles. To segment a single patient MRI, 
all tiles included in the entire volume had to be processed by CNN.

Due to the chosen type of network that provides segmentation by taking into account the neighboring 
parts of the image, each input tile was generated by including 44 additional voxels per side (padding). In par
ticular, padding was obtained by mirroring the border of the image. As a result, a tile of 148  ×  148  ×  148 voxels 
(148  ×  148  ×  148 mm3) was fed into the network and a segmented volume of 60  ×  60  ×  60 voxels was returned. 
Graphical description of tile extraction is reported in figure 3. In order to allow a consistent evaluation of tiles 
close to the border, the entire volume was padded by mirroring 44 voxels per side.

Network architecture
The network architecture used was a 3D U-Net (Ronneberger et al 2015) consisting of four levels. Each level was 
composed of two 3  ×  3  ×  3 convolution layers (with leaky rectify as activation function) followed by a 2  ×  2  ×  2 
max pooling. The number of convolutional kernels increased by going deeper into the U-Net (the amount of 
kernel was empirically defined) and connections between encoding and decoding sides were present. Dropout 
(25%) was used only for the first convolution of each level, while batch normalization was used for all of them. 
Finally, a 1  ×  1  ×  1 convolution, with sigmoidal activation function, was used to generate the probability map. 
In figure 4, a schematic network representation is reported.

CNNs training
Based on the number of catheters inserted into each of the 50 patients involved in this study, the set of patients 
was split into 70% for training and 30% for testing. Catheters based splitting was used instead of patient level 
splitting because of the variable numbers of catheters used in each patient. To improve the learning outcome, the 
training dataset was augmented by mirroring the axial plane along the left–right direction.

As previously reported, in order to obtain the segmentation of a tile of 60  ×  60  ×  60 voxels, the U-Net 
considered also its neighborhood (44 voxels per side) and, as a result, an input tile made of 148  ×  148  ×  148 
voxels (148  ×  148  ×  148 mm) was fed into the network.

The metrics used to train the classification was Dice Similarity Coefficient (DSC) (Dice 1945). Learning rate 
was set to 10−4 and L2 regularization was used. Batch size was equal to 2.

To train the segmentation network only the tiles containing more than 20 voxels labeled as catheters were 
used (this threshold was empirically selected). The corresponding manual segmentations performed by the 
physicist served as GT labels to train the network.

Figure 3.  Example of 3D tile extraction. The blue cube (148  ×  148  ×  148 voxels) delimits the volume used by the neural network to 
segment the portion of image contoured in red (60  ×  60  ×  60 voxels). GT catheters are depicted in yellow.
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Multiple labels generation and voting
The segmentation network was trained using five different subsets of the training-validation dataset to produce 
five different models (Mehrtash et al 2018). The candidate labels generated by each of the five models were fused 
together using majority voting. We will refer to this approach as ensemble training. The segmentation generated 
by majority voting was post-processed by a DBSCAN algorithm that removed clusters located into low density 
point regions (that is noise obtained as output from CNN). Finally, based on empirical observation that islands 
smaller than 50 voxels were due to noise, morphological filters were used to remove these small clusters.

Dataset segmentation and evaluation metrics
To obtain robust performance from the network and facilitate a thorough evaluation on the whole 50 patient 
population, 4-fold cross-validation was performed. This means that four subsets of unique testing patients were 
separated and the ensemble training was executed each time on the remaining patients.

In figure 5, the k-fold and ensemble procedure are explained by means of pseudo-code and a diagram.
To evaluate the quality of the catheter segmentation, a set of distance metrics between automatic and GT 

segmentation were quantified (see equations (1)–(6)). Pairwise comparison was performed for each segmented 
catheter and its GT. After visual inspection of the obtained labels, aiming to guarantee the absence of macroscopic 
segmentation errors, each automatic catheter was matched to the nearest corresponding GT catheter. The search 
volume for the matching catheter was obtained by morphologically dilating the investigated GT catheter mask. 
The number of spurious voxel clusters misclassified as catheters (false positive), as well as the number of missing 
catheters (false negative), were recorded separately.

If d(a,b) is the euclidean distance between two points and A and B are defined as the non-zero voxels in 
the reference and the automatic segmentations respectively, Hausdorff distance (HD) (Aspert et al 2002) is 
computed as:

HD(A, B) = max(D(A, B), D(B, A))� (1)

with D defined as:

D(A, B) = maxa∈Aminb∈Bd (a, b) .� (2)

In order to exclude outlier distance values, 95th percentile of distances (95thD) between labels was computed as:

95thD(A, B) =
95thd(A, B) + 95thd(B, A)

2
� (3)

where:

95thd(A, B) = q0.95(minb∈Bd(a, b)) ∀ a ∈ A.� (4)

Finally, average distance (Davg) was quantified as:

Figure 4.  Schematic of the network architecture.
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Davg(A, B) =
davg(A, B) + davg(B, A)

2
� (5)

with:

davg(A, B) =
1

|A|
∑
a∈A

minb∈Bd(a, b).� (6)

|A| is defined as the number of points belonging to A.
The distance metric was chosen because it provides an additional metric that is appropriate for long tubular 

objects, and often more intuitive for users to understand. For each pair of catheters DSC was also quantified, 
taking into account that, for small structures (volume smaller than 5 cc), DSC between 0.4 and 0.6 represents a 
good agreement (Peroni et al 2013). All error metrics were computed by using the routines implemented in open 
source software Plastimatch (Zaffino et al 2016).

Implementation and deployment
The reported methods were developed in Python by using SimpleITK (Lowekamp et al 2013), NumPy (Oliphant 
2006), Theano (Al-Rfou et al 2016) and Lasagne (Dieleman et al 2015) libraries. The networks were trained on 
a GNU/Linux workstation equipped with an Intel Xeon CPU, 64 GB of RAM and a Nvidia P6000 GPU with 
24 GB of RAM. Finally, to facilitate sharing and deployment of the trained models with other researchers, the 
3D Slicer DeepInfer module was used (Mehrtash et al 2017b). In addition to the reported ensemble of trained 
networks, a computationally ‘lighter’ version is also provided on DeepInfer, which only uses the best network 
(as reported on training data) from the ensemble. This provides the interested users with one option that may be 
more accurate and another that is faster.

Results

For each pair of GT/automatic catheter, DSC, HD, 95thD and Davg were computed to quantify the accuracy of the 

final segmentation. Mean and standard deviation values for each metric are reported in table 1.
Overall, the highest distance values were found along the craniocaudal direction (figure 6, top and bottom 

and gaps of automatic/GT tubes). The number of false positive catheters was 55 out of 826, which corresponds to 
6.7%. Undetected GT catheters (false negatives) were 12 out of 826 (1.5%).

It is important to highlight that catheters close to the center of the obturator, which are not well distinguished 
in the image from the signal void created by the obturator itself, were well identified. An illustrative final 
segmentation is shown in figure 6.

Figure 5.  Pseudo-code and diagram of the adopted training and testing methodology.

Phys. Med. Biol. 64 (2019) 165008 (11pp)
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Visual inspection by axial views of the best, worst and average cases are reported in supplementary materials 
as animated gifs.

The maximum number of epochs needed to identify the optimal set of parameters was equal to 48, with a 
training time for each network of 2 d. Once the weights were computed, the inference time or the time it took to 
label a test MRI (using ensemble of five models) was 9  ±  2.5 min.

Segmentation accuracy was also quantified for the catheters generated by the faster or ‘light’ version of the 
workflow (one model was used, not the ensemble). The same evaluation procedure used for the voted label 

approach was adopted for the single training labelmaps. The obtained results are reported in table 2.
False negative and false positive catheters were 10 and 114, that correspond to 1.2% and 13.8% respectively. 

By using the above described single-model based inference, the computational time was 2  ±  0.5 min.

Discussions

In this work we proposed a new deep learning method for supporting radiation physicists during MRI-
guided HDR GYN brachytherapy treatment planning using fully automatic segmentation or digitization of 
brachytherapy catheters on post-insertion MRI scans. The method, based on processing MRI as multiple 3D 
subvolumes (tiles), uses CNNs.

To the best of our knowledge, this is the first reported method for fully automatic segmentation of catheter 
collections from gynecological MRI. Mehrtash et al (2018) first proved the capability of CNNs to localize a 
single prostate biopsy needle in intraoperative MRIs. In the gynecologic brachytherapy scenario the task is more 
challenging, due to the large number of inserted catheters (up to 35 in the cases analyzed in this work) and to the 
difficulty in precisely defining region of interest an a priori region that contains all the catheters in the image.

In more detail, we would like to underscore the intrinsic difficulty of identifying plastic catheter sheaths in 
MR images. In fact, since no MRI signal is emitted by this type of material, these signal voids appear as black cir-
cles in the axial slices and tube segments in coronal and sagittal slices. This leads to two main sources of misrecog-
nition: (1) the possibility to be confused with vessels and other tubular structures (such as urinary catheters) and, 

Table 1.  Segmentation accuracy for obtained labels. Dice similarity coefficient, Hausdorff Distance, 95th percentile and average distance 
between catheters pairs are reported.

DSC HD (mm) 95thD (mm) Davg (mm)

AVG 0.60 15.9 6.9 2.0

STD 0.17 20.5 9.5 3.4

Figure 6.  3D view of an example catheter detection case: the blue mesh represents GT catheters, the red one the automatic 
segmentation. In panel (a) the catheters are showed relative to an MRI cross-section, in panel (b) a details of three catheters are 
shown for closer inspection.

Phys. Med. Biol. 64 (2019) 165008 (11pp)
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(2) if not completely surrounded by tissues, the difficulty to be distinguished from other signal voids in the MRI 
that are created by the plastic obturator itself, as well any air in the vaginal canal. The task is even more challeng-
ing, since the algorithm was trained and tested on post-procedural MRI acquired in an intraoperative setting, 
that have lower image quality compared to images obtained in a diagnostic setting when more time is available 
for the acquisition. To mitigate these issues, it is important to preserve the 3D nature of MRI, and use 3D convo-
lutional filters rather than use a 2D approach. However, this leads to increased computational complexity and 
processing time. In particular, due to limited GPU memory, in implementing the training solution, trade-offs 
between small batch size, shallow network and small number of filters had to be carefully balanced.

The choice to execute multiple (here 5) trainings increased robustness regarding the computation of network 
weights and reduced risk of overfitting to training data.

Obtained segmentations were evaluated by individual corresponding catheters to each other. It is important 
to note that that this strategy was needed to specifically quantify the accuracy for each catheter and to avoid mis-
leading error estimates by comparing entire point clouds of closely spaced catheters.

In addition to a good accuracy (average distance equal to 2.0  ±  3.4 mm), the proposed methodology does 
not require any manual interaction from the user. Catheters close to the center of the obturator and partially 
surrounded by air were also detected, further proving the effectiveness of the proposed workflow. DSC values of 
0.60  ±  0.17 were obtained, which are competitive for thin tubular structures. Peroni et al (2013), in fact, reports 
satisfying DSCs of 0.4 and 0.6 for structures smaller than 1 cc and 5 cc respectively. The catheters investigated in 
this work had an average volume equal to 0.8  ±  0.5 cc (min–max range 0.1–3.1 cc).

In order to mimic realistic scenario of brachytherapy treatment planning, a light workflow was deployed in 
3D Slicer via the DeepInfer module, making it usable on a typical desktop computer. The proposed light version 
consists of inference based on a single model instead of ensembling results from five models. The model with the 
best validation metric were used. Post-processing step (DBSCAN and small island removal) was kept unchanged. 
This approach is a reasonable solution to deploy the software to the research community for further discussion. 
The tradeoff in using inference based on a single model rather than an ensemble was the increase in the number 
of false positive catheters (13.8%) but reduced computational time (4×  faster).

The weaknesses of the proposed segmentation method are related to (i) the possibility of non-continuous 
segmentation of the catheters (that leads to higher Hausdorff distance errors) and (ii) the dependence of the cur
rently trained networks on a single MRI scanner.

MRI guided insertion of GYN brachytherapy catheters remains a procedure that is currently only performed 
at a limited number of hospitals. The segmentation or digitization of catheters from MRI is a technical hindrance 
to its seamless adoption in the radiation treatment planning workflow. With the increasing number of MRI scan-
ners being installed in departments of radiation oncology around the United States, we hope that larger and more 
comprehensive datasets acquired across multiple scanners and centers will become available for robust research 
solutions to this segmentation task. In the spirit of open science, centers all over the world are invited to use, pro-
vide feedback to, and contribute to the deployed open source software. To mitigate the impact of limited training 
data and to reduce the high cost of data labelling, it would be interesting to investigate the generation synthetic 
data that mimics the properties of MRI, for example using style transfer from CT to MRI (Jin et al 2018).

In this study we do not identify catheters individually (that requires further mesh generation and HDR radio-
active source channel assignment) but classify the voxels as catheter or non-catheter. Future efforts will use the 
obtained labelmaps to generate meshes by taking advantage of the dedicated catheter reconstruction algorithm 
already developed and available in 3D Slicer. The current version of this reconstruction algorithm (Mastmeyer 
et al 2017) is specifically designed to deal with brachytherapy catheters without any raw segmentation working as 
initialization. An improved version for mesh generation can be implemented by combining raw image data and 
output from this CNN. Joining these two strategies could lead to more accurate results, to solve the issue related 
to possibly split segmentations and to better locate each catheter in the physical space (instead of the discrete 
image space) and assign them to the correct HDR radioactive source channel.

Conclusions

In this study, for the first time, a fully automatic, deep learning based segmentation of multiple closely spaced 
catheters from MR images was reported for gynecological brachytherapy treatment planning. Accurate 

Table 2.  Segmentation accuracy of labels generated by the light (non-ensembled) version of the workflow. Dice similarity coefficient, 
Hausdorff Distance, 95th percentile and average distance between catheters pairs are reported.

DSC HD (mm) 95th D (mm) Davg (mm)

AVG 0.61 12.5 5.4 1.6

STD 0.16 17.2 7.9 2.8
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identification was achieved, despite the presence of confounding structures (e.g. blood vessels, plastic obturators). 
The algorithm is freely usable via the open source software platform 3D Slicer, enabling open science.
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