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Summary
The paper describes a multi-
plane deep convolution neu-
ral network approach to
predict synthetic computed
tomography from T1-
weighted magnetic reso-
nance imaging. The method
was tested in the framework
of brain proton therapy,
where Hounsfield Unit inac-
curacies and steep density
gradients easily lead to range
shift errors. Results proved
that the predicted synthetic
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Purpose: The first aim of this work is to present a novel deep convolution neural
network (DCNN) multiplane approach and compare it to single-plane prediction of
synthetic computed tomography (sCT) by using the real computed tomography
(CT) as ground truth. The second aim is to demonstrate the feasibility of magnetic
resonance imaging (MRI)-based proton therapy planning for the brain by assessing
the range shift error within the clinical acceptance threshold.
Methods and Materials: The image database included 15 pairs of MRI/CT scans of
the head. Three DCNNs were trained to estimate, for each voxel, the Hounsfield unit
(HU) value from MRI intensities. Each DCNN gave an estimation in the axial, sagittal,
and coronal plane, respectively. The median HU among the 3 values was selected to
build the sCT. The sCT/CT agreement was evaluated by a mean absolute error (MAE)
and mean error, computed within the head contour and on 6 different tissues. Dice
similarity coefficients were calculated to assess the geometric overlap of bone and
air cavities segmentations. A 3-beam proton therapy plan was simulated for each pa-
tient. Beam-by-beam range shift (RS) analysis was conducted to assess the proton-
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computed tomography can

be suitable for proton beam
planning in the vision of
magnetic resonance imaging
eonly proton therapy.
stopping power estimation. RS analysis was performed using clinically accepted
thresholds of (1) 3.5% þ 1 mm and (2) 2.5% þ 1.5 mm of the total range.
Results: DCNN multiplane statistically outperformed single-plane prediction of sCT
(P < .025). MAE and mean error within the head were 54 � 7 HU and e4 � 17
HU (mean � standard deviation), respectively. Soft tissues were very close to perfect
agreement (11 � 3 HU in terms of MAE). Segmentation of air and bone regions led to
a Dice similarity coefficient of 0.92 � 0.03 and 0.93 � 0.02, respectively. Proton RS
was always below clinical acceptance thresholds, with a relative RS error of 0.14% �
1.11%.
Conclusions: The multiplane DCNN approach significantly improved the sCT predic-
tion compared with other DCNN methods presented in the literature. The method was
demonstrated to be highly accurate for MRI-only proton planning purposes. � 2019
Elsevier Inc. All rights reserved.
Introduction

With the availability of new magnetic resonance imaging
(MRI) and positron emission tomography (PET) hybrid
scanners and MRI linear accelerator (linac) machines, MRI
has recently increased in popularity among radiation therapy
clinical practices.1 The high soft-tissue contrast offered by
this imaging modality makes it the preferred choice for ac-
curate target and region of interest identification in specific
anatomic sites.2 However, the MRI signal is not directly
correlated to tissue electron density, thus posing difficulty in
using MRI for PET attenuation correction and radiation
therapy planning. This issue has driven researchers to
develop routines and algorithms for converting MRI into
synthetic computed tomography (sCT) (often referred as
“pseudo” or “substitute” computed tomography [CT]).
Several methods to relate MRI intensities to CT Hounsfield
units (HU) have been developed and tested, especially for
head and pelvis. MRI-to-sCT techniques are usually classi-
fied as being atlas-based, voxel-based, or hybrid methods,
and 2 systematic reviews of the available methodologies
have been recently published.3,4 A short and a more updated
summary of the state of the art is also available.5 In general,
atlas-based methods6,7 have the advantage of using standard
MRI sequences (T1 and/or T2 weighted only); this means
the imaging protocol for sCT generation can easily be
incorporated into the clinical routine, limiting the acquisition
time and cost. On the other hand, they rely heavily on the
quality of image registration of the atlas onto the patient’s
MRI and cannot accurately handle atypical anatomy or
variable patient populations (eg, pediatric patients). If mul-
tiple atlases are used, the registration errors can be reduced,
but extra time is required to carry out all atlas-to-patient
matching. In addition, the MRI field of view (FOV) has to
be large enough to obtain a robust registration to the atlas.
Voxel-based strategies8,9 have the advantage of not requiring
very accurate image registration, but they rely on multi-
sequence MRI acquisition, including ultrashort echo-time to
visualize bone, to improve tissue classification. The ultra-
short echo-time sequences are not commonly part of
standard clinical MRI protocol. Finally, hybrid methods10

overcome most of the issues of the previous approaches.
More recently, deep learning (DL)-based techniques

have been successfully developed for sCT generation from
MRI. The advantages of using DL for generating sCT
include the following: (1) just standard MRI sequences (T1,
T2) can be used as input, and (2) atypical anatomy can be
managed because neural networks are able to generalize
and extrapolate results; Wolterink et al11 showed that it is
also possible to use unpaired data by training a generative
adversarial neural network (GANN) to synthesize CT im-
ages. Several DL-based methods have been tested for
generating sCTs of the head and pelvis site. For the head,
which is the focus of this work, we focused only on sCT
prediction for the brain, and methods tested in this
anatomic site are presented here.

7Han12 and Xiang et al13 proposed the use of a deep
convolution neural network (DCNN) to generate sCT scans
from T1 MRI and obtained better results than atlas-based
methods. A comparison between DCNN and GANN was
presented by Emami et al,14 who reported that GANN ach-
ieved slightly superior results compared with DCNN. Dinkla
et al15 proposed a dilated DCNN with multiple plane inputs
and achieved the best results within the brain reported in the
current literature. They also tested the sCT in a photon radi-
ation therapy scenario by including dosimetric analysis on
volumetricmodulated arc therapy plans. The interest in testing
MRI-to-sCT conversion for radiation therapy is highly moti-
vated by the current clinical availability of MRI linac,16 with
several clinical studies having demonstrated the high potential
for adaptive treatments.17-20 In addition, some centers are also
working toward the development of in-room MRI guided
proton therapy.21-24 This will combine the ability of MRI to
perform real-time organ tracking with the ability of protons to
significantly reduce total delivered dose to surrounding or-
gans. However, the Bragg peak positioning within the patient
is very sensitive to inaccuracies in the sCT prediction. To
achieveMRI proton planning, strict constraints are needed on
the uncertainty of the stopping power values obtained directly
from MRI, because of the sharp gradient beyond the Bragg
peak.25 Pileggi et al10 showed that performing a beam-by-
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beam analysis of range shift is more accurate than computing
g-index and dose-volume histograms on the global dose to
evaluate the accuracy of HU reassignment.

In this work, we describe a new DCNN multiplane
approach for enhanced sCT prediction. The main novelty
introduced in the DL algorithm is that 3 U-nets are inde-
pendently trained to predict the HU of each pixel by using
axial, sagittal, and coronal inputs, respectively. The final
output is obtained by computing the median value of each
HU triplet. We also propose a robust protocol to assess sCT
accuracy in the air cavities, which are mostly prone to
interscan error between the MRI and the ground truth (GT)
CT. Finally, we tested our method in the framework of
proton brain therapy by evaluating the dosimetric differ-
ence in terms of proton range shift between sCT and CT.
Methods and Materials

The data set consisted of 15 pairs of T1-weighted MRI
(T1MR) and CT image volumes that were used in previous
studies.10,26-28 Images were acquired with the patients in the
supine position. All patients, treated with radiation therapy
after surgical resection of glioblastoma, gave written
informed consent, and the local institutional review board
approved the study. MRI scans were obtained with a 3 Tesla
MAGNETOM Trio (Siemens Healthcare GmbH, Erlangen,
Germany), with a voxel size of 1 � 1 � 1 mm3 and recon-
struction matrix of 256 � 256 � 176. The scanned region
included thewhole head down to theC3 vertebra, except for 5
patients, inwhom the FOVended at the level of the base of the
skull. Sequence parameters were 3-dimensional acquisition
with gradient recalled inversion recovery sequence, flip angle
Z 7�, TEZ 1.64 ms, TRZ 2530 ms, TIZ 1200 ms, pixel
bandwidthZ 650 Hz; NfZ 256; and readout bandwidthZ
166.4kHz (256*650Hz). MRI scans were acquired using an
in-house transmission and receiver (8-channel) coil specially
built-in for a simultaneous brain PET/MR scanner called
brainPET.10,26-28 The position of the head was not restricted
using the treatment facial mask, as in the case of the CT, for 2
reasons: first, patient comfort (patients were inside the MRI
scanner for more than 1 hour at a time), and second and most
importantly for MRI safety to avoid any potential over-
heating of the facial mask owing to the radiofrequency cur-
rents produced by the MRI scanner. Patient head position
was, however, restricted within the magnetic resonance coil
using comfortable pads. For CT scans a LightSpeed QX/i
scanner (GE Healthcare) was used. Voxel size ranged from
0.49� 0.49� 2.5 mm3 to 0.67� 0.67� 2.5 mm3. CT scans
were acquired using a facial mask to immobilize the patient
head position for treatment purposes. CT imageswere used to
train the network and served as GT for testing purposes. The
interscan interval between T1MR and CT acquisition ranged
from 11 to 20 days.

The patient head was masked out by using Plastimatch
software,29 and background image intensities were set to
0 and e1000 for T1MR and CT data, respectively. A rigid
transformation was computed to register the CT onto the
T1MR by using Plastimatch and setting Mattes Mutual In-
formation as metric to optimize. Thus, the final image
resolution for training was that of the MRI. Finally, T1MR

was tissue normalized using Free Surfer, and the full range
of intensities was kept. Inspired by Han,12 an improved
version of the 2D_VGG-16 network30 was implemented for
this work. Details about the multilayer structure of the
network are given as supplementary material S1 (available
online at https://doi.org/10.1016/j.ijrobp.2019.06.2535).
T1MR and CT volumes were sliced along the 3 orthogonal
planes, axial (Ax), sagittal (Sag), and coronal (Cor), and
each group of 2-dimensional images was given as input to
train a different network. As a result, from each plane, a
sCT prediction was obtained independently. This means
that for each voxel Vn (with nZ 1,., N number of voxels)
of the T1MR, a synthetic HU (sHU) triplet estimation was
available ðsHUAxn ; sHUSagn ; sHUCornÞ. The final value of
each Vn was obtained as

sHUVn
Zmedian

�
sHUAxn ; sHUSagn ; sHUCorn

�
cn˛f1; :::;Ng

Equation 1

Training, validation and testing sets consisted of 12, 2,
and 1 patient, respectively. To increase the testing size,
leave-one-out cross validation was executed on each of the
15 patients: Cyclically, 1 patient was taken out and used as
independent data for testing, and the other 14 served to
train and validate the network.

To assess the quality of sCT in comparison to CT, esti-
mation mean absolute error (MAE) and mean error (ME)
were calculated inside the patient head (excluding the
background) on a total of M < N voxels as

MAEZ
1

M

XM

iZ 1

jsHUn �HUnj Equation 2

MEZ
1

M

XM

nZ 1

ðsHUn �HUnÞ Equation 3

where sHU and HU are the Hounsfield Unit values
measured on sCT and CT, respectively.

A tissue-based analysis was also conducted to assess the
accuracy of prediction by creating the following labels,
according to the method described by Huang and Parra:
FAT, gray matter (GM), white matter (WM), cerebrospinal
fluid (CSF), bone, and intracranial air. FAT, GM, WM and
CSF segmentations were obtained by using Morphologi-
cally and Anatomically accuRate Segmentation toolbox,31

an extension of SPM8,32 on T1MR images. Segmented la-
bels were checked by an MRI/PET clinician expert. Air and
bone regions were segmented by thresholding the CT at
<e800 HU and >200 HU, respectively.33 As pointed out
by Edmund and Nyholm,3 bone HUs range from 200
(spongy bone) to about 1200 (cortical bone). Thus, the
MAE spectrum for bone (MAEbone) was calculated by
binning the voxels with same HU value (bin size was 20
HUs) in the CT and averaging their absolute error. HU

https://doi.org/10.1016/j.ijrobp.2019.06.2535
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values up to 1500 were included (these mainly represent
metal clips).

Because CT and MRI interscan time was on average 14
days (mean value), we noticed relevant discrepancies be-
tween the 2 acquisitions in the nasal cavities (presence or
absence of mucus) and naso/oro-pharynx. In this work, we
defined reliable regions to measure errors for air by
considering only frontal, maxillary, and sphenoidal sinus.
These cavities are less prone to interscan variability and are
large enough to minimize partial volume errors.

The Dice similarity coefficient (DSC) metric was used
to assess the geometric accuracy of bone and air cavities on
the sCT according to the following definition

DSCair;boneZ
2
�
VpCTXVCT

�

VpCT þVCT

Equation 4

Air and bone volumes were segmented both on sCT and
CT for comparison by thresholding at <e800 HU and
>200 HU, respectively. As for MAEbone, also DSCbone was
computed by varying the threshold value from >200 to
>1000. We did not segment bone with threshold >1000
because the number of voxels would have been too small to
compute the DSC.

For each patient, a tumor in the range of 2.8 to 3.5 mm
in diameter was simulated behind the frontal sinus, where
boneeairesoft tissue gradients are high and challenging for
proton therapy treatments. Three beams were planned with
the couch at 90�: 1 vertical, along the craniocaudal direc-
tion at 0� gantry angle (GA), 1 anteroposterior 270� GA,
and 1 anterosuperior oblique at 315� GA. It is important to
underline that the plan was not aiming at the optimal
clinical set-up but was used to study proton range shift
sensitivity to boneeairesoft tissue variations. The ante-
roposterior 270� traversed about 8 to 12 mm of bone, a few
millimeters of air cavity, and additional bone before
reaching the tumor. This path is particularly challenging for
proton therapy, in which small variations in density along
the range affect the final proton range.

Because the assessment method was a beam-by-beam
range shift analysis, each beam delivered a single field
uniform dose to allow homogeneous planning target vol-
ume (PTV) coverage of 2 Gy. A pencil beam dose algo-
rithm, available in MatRad (www.matrad.org),34 was used
for dose calculation. As described previously,10 range at
80% of maximum dose (R80) was computed on the dose
profile of 10 central slices of the dose cube dose both for
sCT and CT. For all 15 patients, this resulted in 450 range
shifts to analyze.

Range shift (RS) and relative range shift (RRS) were
defined as

RS[ðR80sCT �R80CTÞ Equation 5

RRS[RS=R80CT Equation 6

where R80 is the beam range computed at 80% of the
normalized Bragg peak.
Guidance on an acceptable level of RRS came from
range uncertainty criteria currently used in clinical appli-
cations at the Massachusetts General Hospital (MGH) and
University of Florida Proton Therapy Institute (HPTI)35:

RS< 3:5%R80CT þ 1mmðMGHÞ Equation 7

RS< 2:5%R80CT þ 1:5mmðHPTIÞ Equation 8

Finally, the voxel-by-voxel difference between CT and
sCT dose cubes was computed within the PTV.

Statistical tests (1-way analysis of variance [ANOVA])
was performed in MATLAB 2017a (The MathWorks,
Natick, MA).

Results

Training and testing time were on average 60 hours and 30
seconds, respectively, for each leave-one-out cross valida-
tion round on a workstation equipped with an NVIDIA
p6000 GPU.

The mean � standard deviation (stdev) values of MAE
and ME of multiplane approach for the 15 patients were 54
� 7 HU (range, 45-66 HU) and e4 � 17 (range, e42-19),
respectively, computed inside the skin contour. In the
single-plane approach, MAE were 65 � 8 HU for Ax,
59 � 7 for Sag, and 60 � 8 for Cor.

A 1-way ANOVA test found statistical difference in
terms of MAE (Fig. 1) between the multiplane and the
single-plane predictions (P < .025). ME was not signifi-
cantly different: e2 � 21 HU for Ax, e4 � 17 for Sag, and
4 � 17 Cor.

In Figure 2, the best (patient 11) and the worst case
(patient 14) are shown, respectively, for visual comparison.
In both cases, the algorithm is able to predict the sCT very
well, with the residual errors being partially due to mag-
netic field distortion (magnetic ring artifacts are visible in
coronal and sagittal views and discussed in more detail by
Walker et al36) and misregistration inaccuracies between
the T1MR and the GT CT (see also supplementary material;
available online at https://doi.org/10.1016/j.ijrobp.2019.06.
2535).

In Table 1, we report the tissue-by-tissue analysis of HU
and sHU in terms of MAE and ME. For soft tissue, errors
for FAT were statistically higher than those for CSF, WM,
and GM (1-way ANOVA, P < 10�6), with an average MAE
of about 44 HU. Analysis of air cavities and bone structures
showed very good agreement between sCT and CT, as
measured by the DSC. Although for air, a comparison with
the state of the art cannot be performed because of the lack
of standard assessment, for bone >200 HU both MAE and
DSC were better than those presented by other
authors.3,4,14,15

Analysis of bone as a function of the HU is shown in
Figure 3, where a comparison with other published results
is also presented. The average DSC was above 0.85 for
thresholds up to 900 HU, thus highlighting the accuracy of
HU prediction for dense bone. In addition, the MAE was

http://www.matrad.org
https://doi.org/10.1016/j.ijrobp.2019.06.2535
https://doi.org/10.1016/j.ijrobp.2019.06.2535
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Fig. 1. Mean absolute error, computed within the skin contour, for each patient by using the multiplane approach compared
with single plane.
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calculated for the bone as a function of HU, up to a
maximum of 1500 HU. The MAE value is approximately
constant between 100 HU and 1400 HU.

Figure 4 shows the RRS boxplots (median � quartiles,
fifth to 95th percentile) for the 3 angles, 0�, 270�, and 315�.
Slightly worse results were obtained for the 0� beam, as
confirmed by 1-way ANOVA (PZ .001), where the density
CT

Best case

sCT CT-sCT

Fig. 2. Visual assessment for the best (patient 11: mean absolu
Z 0.94) and worst (patient 14: mean absolute error within head
computed tomography predictions. The image difference betwe
raphy in the top part of the skull; most of the residual errors are d
the figures from the ring-artefact shape, as described previously
step was higher. Mostly, RRS errors were within 2%. An
example of RS analysis for a beam passing through bone
and air cavity is also shown. All planned beams passed the
tests of equations 7 and 8.

Figure 5 reports the relative distribution of dose cube
difference within the PTV on the whole patient population.
Mean � stdev is 0.00 � 0.01 Gy.
Worst case

CT sCT CT-sCT

te error within head Z 45 HU, DSCAIR Z 0.96, DSCBONE

Z 66 HU, DSCAIR Z 0.87, DSCBONE Z 0.87) synthetic
en computed tomography and synthetic computed tomog-
ue to magnetic field distortions. These artifacts are visible in
.36



Table 1 Air, soft tissues, fat, and bone HU, MAE, ME, and DSC comparison between CT and sCT (mean � standard deviation)

Tissue Mean HU on CT Mean HU on sCT MAE (HU) ME (HU) DSC

Air (HU <e800) e940 � 14 e928 � 18 53 � 32 e37 � 39 0.92 � 0.03
FAT e73 � 3 e49 � 13 44 � 8 e4 � 5 d
CSF 24 � 2 28 � 5 10 � 3 0 � 9 d
WM 37 � 3 37 � 3 6 � 2 0 � 4 d
GM 48 � 4 48 � 2 8 � 2 0 � 6 d
Bone (HU >200) 769 � 71 767 � 33 119 � 17 20 � 52 0.93 � 0.02

Abbreviations: CT Z computed tomography; DSC Z Dice similarity coefficient; HU Z Hounsfield units; MAE Z mean absolute error; ME Z mean

error; sCT Z synthetic computed tomography.
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Discussion

MRI guided radiation therapy is now a reality for photon
therapy but still a dream for proton therapy. At present,
several groups are actively developing in-room MRI for
proton therapy, with the added advantage of tumor dose
escalation while keeping radiation side effects low.21-24 In
such a context magnetic resonance proton-based planning is
desirable to close the loop of magnetic resonanceeonly
proton therapy. This paper aimed at developing an MRI-to-
sCT algorithm for accurate planning in brain proton therapy.

The MRI-to-sCT algorithm was based on training mul-
tiple DCNNs to predict the HU from T1MR intensities and
comparing them with a standard CT HU estimation. The
main novelty introduced in the procedure was that the input
T1MR volume was sliced across the 3 orthogonal planes
(axial, sagittal, and coronal) and that 3 CNNs were inde-
pendently trained, 1 per plane, as has been successfully
done for segmentation purposes.37 A voting system, based
on the median value, was then used to select the best of the
3 DCNN results on a voxel-by-voxel basis. Very recently,
200100
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Fig. 3. Left panel: Dice similarity coefficients as a function of
reported previously3 (dotted line). According to our calibration c
appreciable that bone Dice similarity coefficients depends on the
the bone. Right panel: Mean absolute error (mean � standard d
spectrum, gray curve. (A color version of this figure is available
the multiplane approach was also proposed by Dinkla
et al15; however, only 1 DCNN was trained with 3 equally
weighted inputs representing the axial, sagittal, and coronal
planes. Although from a mathematical point of view, in
terms of network convergence, the 3 individual networks
versus 1 network should perform similarly, from a
computational point of view the 3-network training
approach converges much faster. This leads to the possi-
bility to parallelize the processes and to reduce the batch
size even with limited computational resources or larger
data sets. In addition, the 3-network training is preferable
especially in case of nonisotropic voxel size and non-
isotropic reconstruction matrix (where each view can have
a different dimension). Moreover, the sagittal view is
different compared with the other 2 views because the head
is narrower and the number of informative slices in the
sagittal plane is smaller than in the other 2 planes. Finally,
sagittal slices are symmetrical to the central sagittal slice,
so this view has less variability than the others.

In our experiments, the training of 3 DCNNs indepen-
dently, 1 for each plane, reduced the average MAE from 67
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� 11 (1 DCNN with 3 inputs and batch size 18) to 54 � 7
HU (3 DCNN with 1 input each and batch size 1) and the
ME from e12 � 30 to e4 � 17 HU. The batch size
reduction in the 3-network training led to a 20%
improvement in the MAE and allowed us to train the al-
gorithm on a not very high-performance GPU. Table 2
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Fig. 5. Normalized distribution of dosimetric error
computed within the planning target volume. The error was
computed by performing a dose difference between
computed tomography and synthetic computed tomography
on a voxel-by-voxel basis and normalized by the total
number of voxels in the planning target volume. Each
histogram bin represents 0.02 Gy.
presents an overview of the MAEs obtained by recent
works in which DL networks were implemented to generate
sCT of the head. We also report numbers we previously
obtained by 2 hybrid methods on the same patient cohort.

Aside from the small number of patients used to train the
network, our results represent a significant improvement in
the estimation of MAE compared with the current state of
the art. It is possible that results can be improved by
enlarging the training size. However, it is very difficult to
compare methods because of the different metrics and
procedures used to assess the sCT estimations algorithms,
which are very dependent on the analyzed region (entire
image FOV vs patient contour or smaller regions of inter-
est) and the interscan time between MRI and CT (see
supplementary material; available online at https://doi.org/
10.1016/j.ijrobp.2019.06.2535). For instance, the presence
of metal inserts (eg, dental fillings) and changes in anatomy
between the 2 acquisitions can overestimate the error. The
latter aspect is particularly relevant for air cavities (nasal
cavities, mouth, pharynx), which are prone to intra- and
interscan deformation, so that interscan interval plays a
major role in image comparison. Ideally, the 2 scans should
be acquired within a few hours for fair comparison. How-
ever, in many clinics this is not possible because the MRI
scanner is located in a different department or because the
clinical workflow does not allow close acquisitions. Finally,
the DSC metric, which is usually used to assess geometric

https://doi.org/10.1016/j.ijrobp.2019.06.2535
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Table 2 Comparison in terms of MAE computed within the skin contour in recent works implementing deep learning techniques for
sCT generation

Method MRI sequence
FOV (pixel) spatial
resolution (mm) No. of patients Testing

MAE (HU)
Mean � standard deviation

Multiplane CNN T1 256 � 256 � 176
1 � 1 � 1

15 LOOCV 54 � 7

Dinkla et al15 T1 288 � 288 � 183
1.1 � 1.1 � 1

52 2-fold cross validation 67 � 11

Wolterink11 T1 288 � 288 � 183
0.87 � 0.87 � 1

24 18 training and 6 testing 74 � 2

Xiang et al13 T1 234 � 181 � 149
1.2 � 1.2 � 1

16 LOOCV 85 � 9

Han12 T1 256 � 256 � 160
1 � 1 � 1

18 6-fold cross validation 85 � 17

Emami et al14 T1 NA
0.9 � 0.9 � 1.25

15 4-fold cross validation 89 � 10

Speier et al26 T1, T2 256 � 256 � 176
1 � 1 � 1

15 LOOCV 73 � 2
T1 83 � 6

Pileggi et al10 T1, T2 256 � 256 � 176
1 � 1 � 1

15 LOOCV 118 � 10
T1 126 � 9

Abbreviations: CNNZ convolutional neural network; FOVZ field of view; HUZ Hounsfield units; LOOCVZ leave-one-out cross validation; MAE

Z mean absolute error; MRI Z magnetic resonance imaging; sCT Z synthetic computed tomography.

In the last 2 rows of the table, results of 2 hybrid methods tested on the same patient cohort are also reported.
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agreement (especially for bony anatomy) is dependent on
the HU threshold chosen to segment, which sometimes is
not even reported. In proton therapy, in this work, we partly
addressed the issue of robust sCT versus GT CT compari-
son by proposing the following workflow for the brain
district:

� compute MAE and other metrics inside the patient skin
and from the top of the head to the base of skull to
avoid major metal artifacts due to dental fillings (which
are very common) and interscan position variation of
the mouth and neck (see supplementary material;
available online at https://doi.org/10.1016/j.ijrobp.2019.
06.2535);

� perform a tissue-by-tissue analysis by segmenting soft
tissue on the MRI and by thresholding air and bone on
the CT. For air we also propose to select air cavities
that are less prone to variations over days, such as
frontal, maxillary, and sphenoidal sinus. It is very
important to avoid the nares and pharynx because of
different fillings and position of the tongue and to
avoid the ear cavities, in which the small bone struc-
tures generate partial volume effects with air at stan-
dard CT resolution;

� analyze performances on bone tissue as a function of HU
thresholding. Small metal clips that do not generate ar-
tifacts can be included in the analysis because they do not
interfere too much. However, if there are large implants
or metal screws through the skull, these should be
removed from the analysis to avoid overestimating the
error.
� perform range shift analysis when proton planning has to
be tested. This method has been shown to be more sen-
sitive than dose difference to HU inaccuracies and high
step gradients.10,25

The dosimetric analysis conducted on our patient cohort
showed very promising results in light of MRI-onlyebased
proton therapy. The ability to accurately predict air and
bone density from T1-weighted MRI led to accurate dose
planning also in regions where the density step is very high
(as behind the frontal sinus). A limitation of this study is
that, because the tumor did not physically exist behind the
frontal sinus, the tumor was assumed to have the properties
of healthy brain, which has lower density than that of a
normal brain tumor. The work was mainly aimed at testing
the prediction of the air/bone interface with an MRI-to-CT
conversion, where proton energy deposit is very sensitive to
the high-density gradient.
Conclusions

The major advantage of our method is its ability to accu-
rately predict shape and density of the tissues from air
(0.001 g/cm3) to bone (2 g/cm3), which includes tumor
densities that can vary between 1.0 g/cm3 and 1.2 g/cm3.
However, a weakness of the present method is that the al-
gorithm requires a paired set of CT and MRI scans for
training; these scans should be taken under identical con-
ditions (patient position and immobilization) and on the
same day to minimize conversion errors.
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S1	Network	architecture	and	training	
	
The	architecture	of	the	CNN	used	in	this	work	is	depicted	in	figure	S1	and	it	is	similar	to	the	U-net	
variant	 proposed	 by	 Han	 [12].	 The	 network,	 structured	 on	 5	 levels,	 can	 be	mainly	 split	 in	 two	
mirrored	parts:	the	encoding	and	the	decoding	branch.	In	the	encoding	path	the	aim	is	to	extract	
the	most	 representative	 features	 from	 the	 T1MR,	meanwhile	 in	 the	decoding	part	 the	 identified	
features	are	mapped	back	to	generate	a	sCT.	
In	the	encoding	part	the	number	of	filters,	as	well	as	the	amount	of	convolutional	layers,	increase	
by	going	deeper;	 at	 the	opposite,	 in	 the	decoding	 side,	 they	decrease	as	 close	 the	output	 layer	
approaches.	 As	 it	 is	 possible	 to	 see	 from	 figure	 S1,	 the	 top	 level	 is	 made	 of	 64	 filters	 and	 2	
convolutions,	versus	512	and	3	of	the	bottom	one.	
When	a	 level	change	happens,	a	max	pool/upsample	 layer	 is	used	to	reduce/expand	the	feature	
map	for	encoding	and	decoding	respectively.	
All	convolutions	are	executed	by	using	a	3x3	kernel	and	a	leaky	rectify	activation	function	except	for	
the	last	one	where,	in	order	to	collapse	the	multidimensional	feature	map	into	a	single	channel	(that	
is	the	2D	sCT	slice),	kernel	size	equal	to	1	and	linear	activation	function	are	used.	Batch	normalization	
is	always	adopted.	
Finally,	 in	order	to	keep	and	preserve	the	high	resolution	features	from	the	encoding	side	of	the	
network,	 they	 are	directly	 reported	 to	 the	decoding	part	 and	provided	 as	 additional	 input.	 This	
linkage	is	named	“direct	connection”.	
Mean	absolute	error	is	used	as	cost	function	to	train	the	network	and	L1	regularization	is	adopted	
to	prevent	overfitting.		

	
Figure	S1.	Architecture	of	the	U-net	used	in	this	work	
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The	upper	panel	of	figure	S2	shows	our	first	attempt	to	introduce	multiplane	CNN	for	sCT	
prediction.	The	axial,	sagittal	and	coronal	images	were	introduced	simultaneously	and	in	shuffled	
order	to	train	a	single	CNN.	The	batch	size	was	set	to	18,	to	allow	sufficient	computational	
performance	on	the	hardware	used	in	this	study.	By	observing	the	results,	we	noticed	that	the	
sagittal	view	was	statistically	worse	(p=0.05,	one-way	Anova).	Our	hypothesis	was	that	the	number	
of	informative	slices	in	the	sagittal	view	is	different	compared	to	the	other	two	views	because	the	
head	is	narrower	in	the	latero-lateral	direction	and	broader	in	the	antero-posterior.	Moreover,	
sagittal	slices	are	symmetrical	to	the	central	sagittal,	so	for	this	view	there	is	less	variability	than	
the	others.	One	view	may	converge	earlier	if	trained	separately.	
	

	
Figure	S2.	First	approach	for	multiplane	training	and	voting	
	
So,	we	decided	to	carry	out	independent	training,	as	depicted	in	figure	S3.	This	allowed	us	to	
parallelize	the	process	and,	as	a	consequence,	to	decrease	the	batch	size	to	1.	Results	confirmed	
the	improvement	in	image	conversion	by	adopting	this	approach.		
	

	
Figure	S3.	Adopted	approach	for	multiplane	training	and	voting	
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S2	Impact	of	image	quality	on	sCT		
	
In	the	case	of	patient	14	(worst	case)	we	noticed	motion	artifacts	in	the	facial	regions	of	T1MR.	The	
difference	in	image	quality	between	patient	11	and	patient	14	can	be	appreciated	in	figure	S5.	
	
Patient	#11	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Patient	#14	

	
Patient	#14

		
Figure	S4.	Visual	comparison	between	patient	11	(upper	panel)	and	14	(middle	and	lower	panel).	
Patient	14	presented	some	motion	artifacts	clearly	visible	in	the	mouth	and	pharynx.	This	is	in	
agreement	with	the	inaccuracies	visible	in	figure	1	of	the	manuscript.		



S3	Air	and	bone	segmentation	
	
In	figure	S6	an	example	of	sinus	and	bone	segmentation	(patient	#12)	is	showed.	Table	S1	reports	
DSC	results	for	each	patient.	
		

	 	
Figure	S5.	Sinus	cavities	and	bone	structures	obtained	by	thresholding	the	CT	(green	labels)	and	
the	sCT	(yellow	labels).	Results	are	overlaid	both	on	T1MR	in	order	to	show	the	high	accuracy	in	
converting	similar	MR	intensities	to	air	and	bone	and	on	sCT	to	show	the	quality	of	estimation.		
	
	
	
	
	
	
	
	
	



	
Table	S1.	DSC	for	bone	and	air	cavities	for	each	patient	
	

Patient 
DSC 
Bone 

DSC 
Air 

1 0.94 0.93 

2 0.93 0.91 

3 0.94 0.91 

4 0.94 0.92 

5 0.94 0.94 

6 0.92 0.93 

7 0.93 0.94 

8 0.93 0.94 

9 0.93 0.95 

10 0.95 0.90 

11 0.94 0.96 

12 0.95 0.93 

13 0.96 0.83 

14  0.87 0.86 

15 0.92 0.94 
	
	
	
S4	Impact	of	metal	inserts	and	mis-registration		
The	motivations	for	assessing	the	sCT	conversion	excluding	mouth	and	neck	are	due	to	the	
presence	of	metal	artifacts	in	the	CT	in	the	oral	cavity	(patients	#1,	2,	3,	4,	5,	11,	15)	and	slightly	
different	position	of	the	neck	between	T1MR	and	CT	acquisitions	(patients	#	1,	2,	3,	6,	12,	14).		
Table	S2	reports	the	MAE	error	excluding	and	including	mouth	and	neck	and	the	interscan	interval	
In	figure	S7,	three	examples	of	the	axial	view	of	teeth	in	the	CT	vs,	sCT	are	showed.	Interestingly,	
the	DCNN	method	was	able	to	predict	the	oral	cavity	anatomy	without	streak	artifacts.		
In	figure	S8,	an	example	of	neck	misregistration	is	showed	for	patient	#1.	
	
Table	S2.	Comparison	in	terms	of	MAE	considering	the	whole	field	of	view	and	excluding	the	
neck	and	the	mouth.	Patients	#	7,	9,	10,	and	12	there	is	no	difference	because	the	FOV	was	
already	cropped	at	the	base	of	skull.	
	

Patient	#	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Crop	at	base	of	skull	 52	 54	 60	 51	 49	 64	 50	 50	 53	 45	 45	 49	 64	 66	 55	

Including	mouth	and	
teeth	 61	 58	 66	 55	 51	 81	 50	 52	 53	 45	 47	 49	 64	 80	 60	

Interscan	interval	(days)	 11	 15	 10	 11	 11	 12	 16	 20	 15	 11	 19	 14	 17	 16	 16	

	



	
	
Patient	#1	
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Figure	S6.	Effects	of	metal	artifacts	on	reference	CT		

	

	
Figure	S7.	Inaccuracies	between	CT	and	T1MR	for	patient	1	in	the	neck	region.	While	sCT	geometry	
is	consistent	with	T1MR	,	CT	and	T1MR	were	not	perfectly	matching,	because	only	rigid	registration	
was	performed	between	the	two	datasets.	So	errors	differences	between	sCT	and	CT	are	visible.



S5	Relative	range	shift	results	
	
In	table	S3	the	RRS	for	each	analyzed	slice	are	reported.		All	beams	passed	both	MGH	and	HTPI	acceptance	tests.	
	
Table	S3.	RRS	slice	by	slice	
	
	 Relative	RS RRS	test	
PAT	 Beam	 Slice	01	 Slice	02	 Slice	03	 Slice	04	 Slice	05	 Slice	06	 Slice	07	 Slice	08	 Slice	09	 Slice	10	 MGH	 HTPI	

1	
0	 2.22	 1.64	 1.07	 1.01	 1.01	 0.83	 0.80	 0.74	 0.26	 0.53	  ü  ü 

270	 1.60	 1.15	 0.85	 0.90	 0.93	 0.68	 0.55	 0.68	 0.71	 0.62	  ü  ü 
315	 0.21	 0.20	 0.15	 0.20	 0.29	 0.27	 0.22	 0.17	 0.13	 0.09	  ü  ü 

2	
0	 1.36	 0.95	 1.06	 1.12	 1.02	 0.86	 0.46	 0.04	 0.57	 0.73	  ü  ü 

270	 0.01	 0.02	 0.02	 0.03	 0.01	 0.01	 -0.01	 -0.02	 0.04	 0.03	  ü  ü 
315	 0.13	 0.14	 0.12	 0.12	 0.03	 -0.04	 -0.02	 0.06	 0.01	 -0.18	  ü  ü 

3	
0	 -1.05	 -1.15	 -0.57	 -0.12	 -0.35	 -0.28	 -0.08	 0.16	 0.29	 0.78	  ü  ü 

270	 0.01	 0.27	 0.06	 0.01	 0.14	 -0.04	 0.00	 0.03	 -0.03	 -0.02	  ü  ü 

315	 1.60	 1.55	 1.51	 1.38	 1.13	 0.93	 0.79	 0.71	 0.55	 0.40	  ü  ü 

4	
0	 -1.51	 -1.35	 -0.19	 1.29	 -0.23	 -2.22	 -1.47	 -0.62	 -0.03	 0.39	  ü  ü 

270	 0.49	 0.62	 0.65	 0.63	 0.58	 0.51	 0.52	 0.44	 0.45	 0.45	  ü  ü 

315	 1.26	 1.40	 1.57	 1.63	 1.64	 1.55	 1.50	 1.45	 1.38	 1.38	  ü  ü 

5	
0	 0.20	 -1.16	 -1.12	 0.39	 0.74	 0.60	 0.47	 0.50	 0.49	 0.57	  ü  ü 

270	 0.38	 0.31	 0.63	 0.71	 0.62	 0.50	 0.48	 0.50	 0.54	 0.51	  ü  ü 
315	 1.05	 1.08	 1.14	 1.12	 1.12	 1.11	 1.02	 0.97	 0.88	 0.79	  ü  ü 

6	
0	 -0.58	 -0.54	 -2.08	 -1.34	 -2.79	 -4.16	 -3.76	 -3.40	 -2.93	 -2.23	  ü  ü 

270	 -1.17	 -1.32	 -1.25	 -1.06	 -1.07	 -1.29	 -1.42	 -1.41	 -1.63	 -1.57	  ü  ü 
315	 -0.63	 -0.62	 -0.64	 -0.94	 -1.08	 -1.06	 -1.05	 -1.03	 -1.06	 -1.15	  ü  ü 

7	
0	 1.04	 0.58	 -0.09	 -0.58	 -0.88	 -0.99	 -0.83	 -0.60	 -0.37	 0.02	  ü  ü 

270	 0.14	 0.11	 0.08	 0.06	 0.05	 -0.06	 -0.11	 -0.02	 0.01	 0.08	  ü  ü 

315	 -0.43	 -0.36	 -0.19	 -0.16	 0.00	 0.10	 0.17	 0.21	 0.21	 0.22	  ü  ü 

8	
0	 1.76	 2.04	 2.51	 2.31	 1.37	 0.46	 0.00	 -0.08	 0.04	 0.58	  ü  ü 

270	 -0.51	 -0.41	 -0.36	 -0.27	 -0.12	 -0.21	 -0.32	 -0.36	 -0.35	 -0.31	  ü  ü 



315	 0.02	 0.03	 0.03	 0.03	 0.00	 0.03	 0.12	 0.23	 0.36	 0.30	  ü  ü 

9	
0	 -0.35	 -0.35	 -0.29	 -0.13	 -0.05	 0.03	 0.08	 0.05	 0.09	 0.03	  ü  ü 

270	 0.48	 0.59	 0.46	 0.25	 0.19	 0.29	 0.23	 0.20	 0.23	 0.32	  ü  ü 

315	 -0.19	 0.05	 0.20	 0.35	 0.44	 0.45	 0.51	 0.57	 0.65	 0.70	  ü  ü 

10	
0	 0.75	 0.57	 0.68	 0.60	 0.39	 0.12	 0.02	 0.15	 0.16	 -0.06	  ü  ü 

270	 -0.12	 -0.19	 -0.25	 -0.17	 -0.10	 0.01	 0.13	 -0.06	 -0.08	 0.04	  ü  ü 
315	 -0.19	 0.05	 0.20	 0.35	 0.44	 0.45	 0.51	 0.57	 0.65	 0.70	  ü  ü 

11	
0	 0.35	 0.28	 0.95	 0.64	 0.46	 0.51	 0.52	 0.42	 0.37	 0.19	  ü  ü 

270	 -0.57	 -0.58	 -0.42	 -0.51	 -0.45	 -0.44	 -0.39	 -0.27	 -0.16	 -0.02	  ü  ü 
315	 -0.05	 -0.15	 -0.22	 -0.24	 -0.25	 -0.32	 -0.35	 -0.21	 -0.18	 -0.19	  ü  ü 

12	
0	 -3.22	 -3.22	 -3.30	 -3.52	 -3.47	 -2.79	 -1.97	 -1.41	 -1.21	 -1.39	  ü  ü 

270	 1.47	 1.44	 1.41	 1.34	 1.31	 1.31	 1.28	 1.26	 1.29	 1.12	  ü  ü 

315	 0.23	 0.23	 0.25	 0.32	 0.39	 0.47	 0.55	 0.57	 0.58	 0.58	  ü  ü 

13	
0	 1.41	 2.78	 2.13	 1.38	 1.31	 0.90	 0.04	 -0.38	 -0.16	 0.34	  ü  ü 

270	 0.27	 0.40	 0.39	 0.34	 0.36	 0.23	 0.14	 0.19	 0.37	 0.35	  ü  ü 

315	 -0.41	 -0.24	 -0.22	 0.02	 0.04	 0.11	 0.21	 0.30	 0.31	 0.40	  ü  ü 

14	
0	 -2.93	 -2.93	 -1.82	 -1.49	 -1.88	 -1.79	 -1.73	 -1.85	 -1.69	 -1.59	  ü  ü 

270	 -1.19	 -1.14	 -1.04	 -0.86	 -0.63	 -0.61	 -0.66	 -0.76	 -0.66	 -0.84	  ü  ü 
315	 -0.51	 -0.51	 -0.50	 -0.50	 -0.51	 -0.51	 -0.43	 -0.40	 -0.47	 -0.55	  ü  ü 

15	
0	 2.44	 1.40	 0.77	 0.48	 0.38	 0.32	 0.25	 0.38	 0.30	 0.19	  ü  ü 

270	 0.96	 0.82	 0.71	 0.46	 0.24	 0.38	 0.48	 0.39	 0.23	 0.23	  ü  ü 
315	 0.18	 0.19	 0.22	 0.34	 0.39	 0.47	 0.49	 0.52	 0.49	 0.50	  ü  ü 

 


