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Abstract
Background Cadmium (Cd) is a widespread environmental pollutant that causes alterations in human health acting as endo-
crine disruptor. Recent data suggest that cardiovascular system might be a contamination target tissue, since Cd is found in 
atheromatic plaques. Thus, the purpose of this study was to evaluate the consequence of Cd exposure of endothelial cells 
in vitro to evaluate detrimental effect in vascular system by a potential sex-steroid hormone receptor-dependent mechanism(s).
Methods To this aim, Human Umbilical Vein Endothelial Cells (HUVECs) were cultured and exposed to several concentra-
tions of cadmium chloride  (CdCl2) for different interval times.
Results CdCl2 exposure of HUVECs induced a significant increase of ERβ and Cyp19a1 at both mRNA and protein levels, 
while a drastic dose-dependent decrease of AR expression level was observed after 24 h of exposure. On the contrary, an 
increase of  PhARser308 as well as a reduction of PhGSK-3βser9 and  PhAKTser473 was detected after 1 h treatment. This effect 
was consistently reduced by GSK inhibition. Furthermore,  CdCl2 abolished DHT-induced cell proliferation in HUVECs 
suggesting an antagonist-like effect of Cd on AR-mediated signaling. Remarkable, after 6 h  CdCl2—treatment, a relevant 
increase in TNF-α, IL-6 and IL-8 mRNA was observed and this effect was blocked by the presence of an ERβ-selective 
antagonist. Moreover, Cd-induced TxR1 overexpression, likely, correlated with the activation of p38 MAPK/NF-κB pathway.
Conclusion In conclusion, our study demonstrates for the first time that Cd alters sex-steroid hormone receptors level and 
activity likely affecting intracellular signaling linked to a proinflammatory state in endothelial cells. This alteration might 
possibly lead to endothelial cell injury and vascular dysfunction and could be a mechanism of gender-specific atherogenic 
damages induced by endocrine disruptors and, thus, induce atherogenic events with increased risk of cardiovascular diseases 
in individuals exposed to this endocrine disruptor.
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Introduction

Cadmium (Cd) is a highly toxic heavy metal found in soil, 
water, rock sediments usually in the form of complexes 
oxide, sulphide and carbonate in zinc, lead, and copper 
ores [1], which acts as an endocrine disruptor, mimick-
ing estrogenic activity and interfering with intracellular 
pathway [2].

This metal is released as a by-product of various indus-
trial activities, since it is used in the manufacture of elec-
troplating, alloy production, nickel–cadmium batteries, 
fertilizers, and paint pigments. Beside occupational expo-
sure, individuals could also be exposed to Cd from non-
occupational sources, such as food and water due to soil 
contamination [3, 4]. Moreover, cigarette smoking is an 
important source of Cd exposure and smokers have about 
two times higher levels of this pollutant in their bodies 
then non-smokers [5]. Cd is a potent cell poison, which 
causes different types of damage, including cell death, 
alteration in cell proliferation, and disruption of intracel-
lular pathway in different endocrine target cell types [2, 
6–8]. Depending on the dose, route, and duration, expo-
sure to Cd can cause specific damages in various organs 
including kidney, liver, lung, bone, testis, and placenta [9].

Interestingly, the half-life of Cd ranges from 12 to 
30 years [10], and since human body does not possess an 
active mechanism for Cd elimination, its levels increase 
over time due to its slow elimination [11]. Cd forms com-
plexes with Metallothionein, released into the blood, and 
transported to various tissues and organs [12]. Indeed, 
experimental evidences suggest that Cd causes several 
disorders in different organs and tissues including kidney, 
lung, bone, muscle but also endothelial dysfunction lead-
ing to several vascular diseases, including atherosclerosis, 
myocardial infarction, and stroke [9, 13–20]. In fact, it 
has been recently suggested that vascular endothelium is 
an important target of Cd toxicity [21]. Indeed, blood Cd 
level appears associated with accumulation of this metal 
in atherosclerotic plaques [17], suggesting potential direct 
effects on the progression of atherosclerotic process [18].

It is worth to underline that Cd has been defined a met-
allohormone [22], since it interacts with sex-steroid hor-
mone receptors, interfering with downstream signaling 
pathways and further confirming its activity as endocrine 
disruptor [23–27]. Moreover, several studies have demon-
strated, in cellular in vitro model systems, that Cadmium 
Chloride  (CdCl2) binds with high affinity to the hormone-
binding domain of estrogen receptor (ER)-α mimicking 
many of the biological effects of estradiol in breast can-
cer cells [2, 24, 28]. Studies performed in vivo have also 
shown estrogenic-like effects in uterus and mammalian 
glands induced by Cd [29], while other have demonstrated 

that Cd has androgen-like activity in prostate cancer cells 
binding with high affinity the hormone-binding domain of 
androgen receptor (AR) inducing transcriptional activity 
whereas a decrease in expression level [25, 27].

Since it is well known that in both gender sex, steroid 
hormones greatly influence vascular functions in different 
periods of life, it can be hypothesized that alteration in hor-
mones or receptor levels might influence vascular function 
and atherogenic events [30–33]. Experiments on female rats 
have indicated an interdependence of Cd and  E2 for eliciting 
effects on the immune system, suggesting that females may 
be at a greater risk than males for Cd-induced immunomodu-
lation [31]. Moreover, recent studies have strongly suggested 
that pollution and soil/water contamination might augment 
cardiovascular diseases, though there is a scarce knowledge 
on whether and how endocrine disruptors, including Cd, 
might influence sex-steroid receptors signaling in vascular 
endothelial cells (ECs) likely leading to increased risk of 
cardiovascular diseases.

Thus, aim of this study was to evaluate potential altera-
tions induced in ECs by Cd exposure in sex-steroid hor-
mones receptors, eventually in proinflammatory cytokines, 
and characterize the mechanisms involved to further under-
stand weather this heavy metal might lead to vascular 
injury by gender-specific sex-steroid receptor-dependent 
mechanisms.

Materials and methods

Cell culture and treatments

Human Umbilical Vein Endothelial Cells (HUVECs) were 
purchased from Lonza (Basel, Switzerland) and were cul-
tured in endothelial basal cell medium-2 (EMB-2) supple-
mented using the EGM-2-MV bullet kit (Lonza) and anti-
biotics (100 IU/ml penicillin and 100 μg/ml streptomycin). 
Cells were cultured in humidified air at 37 °C with 5% 
 CO2. In all experimental protocols, cells were seeded at 
a density of 3000 cells/cm2 and allowed to grow for 24 h. 
Experiments were performed in EBM-2 medium supple-
mented with 2% charcoal-treated calf bovine serum (CBS). 
Cadmium chloride (CdCl2), purchased from Sigma-
Aldrich, St. Louis, MO, was dissolved in water and stock 
solution sterilized by filtration. Dihydrotestosterone (DHT; 
Sigma-Aldrich) and 17β Estradiol  (E2; Sigma-Aldrich) 
were used at the final concentration of 0.01 μM. The selec-
tive estrogen ERβ receptor antagonist 4-[2-Phenyl-5,7-bis 
(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-3-yl]phenol 
(PHTPP; Santa Cruz Biotechnology) was used at the 
final concentration of 5 μM. The p38 inhibitor SB203580 
(Sigma-Aldrich) and glycogen synthase kinase 3 specific 
inhibitor AR-A014418 (Sigma-Aldrich) were added to 



729Journal of Endocrinological Investigation (2019) 42:727–739 

1 3

the cell cultures to reach a final concentration of 10 μM. 
All inhibitors were added 1 h before  CdCl2 exposure and 
maintained for the length of treatments.

Cell proliferation assay

HUVEC cell viability was determined using the Cell Titer 
96 Aqueous One Solution Cell Proliferation Assay kit 
(Promega), based on cell-mediated (3-(4,5-dimethylthia-
zol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) reduction to formazan, following 
the manufacturer’s protocol. Cells were cultured in 96-well 
plates at the density mentioned above. Cell viability was 
evaluated in cell cultures treated for 24 and 48 h with 
 CdCl2 at concentrations ranging between 1 and 20 μM, 
dihydrotestosterone (DHT) and after co-treatment with 
 CdCl2 (10 μM) and DHT (10 nM). The absorbance was 
measured at 490 nm using a plate reader (680 Microplate 
Reader; Bio-Rad) and expressed as the optical density 
value. Three independent experiments were performed in 
triplicate.

Western blotting

Cells were washed with PBS and lysed in radioimmuno-
precipitation assay buffer [20 mM Tris (pH 7.5), 150 mM 
NaCl, 50 mM NaF, 1% nonidet P-40, 0.1% deoxycholic 
acid, 0.1% sodium dodecyl sulfate (SDS), 1 mM EDTA, 
1 mM phenylmethylsulfonyl fluoride and 1 μg/ml leupep-
tin]. Protein concentrations of cleared lysates were deter-
mined using the bicinchoninic assay (Bio-Rad, Hercules, 
CA, USA). Equal amounts of protein (10–50 µg) were 
separated by SDS–polyacrylamide gel (8–12% polyacryla-
mide gel) and transferred to a polyvinylidene fluoride 
(PVDF) membrane. PVDF membranes were blocked with 
5% skimmed milk and incubated overnight with the pri-
mary antibody in PBS-Tween at 4 °C. Primary antibodies 
including total or phospho-p38-MAPK, PhGSK-3βser9, and 
GSK-3β antibodies were purchased from Cell Signaling 
Technology. The AR,  PhARser308, ERβ, Cyp19a1, TrxR1, 
Ph-IkBα, AKT, and PhAKT ser473 antibodies were pur-
chased from Santa Cruz Biotechnology. GAPDH antibody 
was purchased from Sigma-Aldrich. The immunoreactive 
protein bands were detected by incubation for 1 h with 
horseradish peroxidase-conjugated secondary goat anti-
rabbit (1:10,000, millipore) or goat anti-mouse (1:20.000, 
Sigma-Aldrich) in blocking solution at room temperature, 
and they were visualized by enhanced chemiluminescence 
(Amersham Biosciences). The bands were acquired on an 
ImageQuant LAS 4000 (GEHC) and quantified by ImageJ 
software (137F5).

Measurement of mRNA levels by quantitative 
RT‑PCR

Total cellular RNA was extracted using the TRI reagent 
(Sigma) according to the manufacturer’s instructions and 
subjected to DNase digestion (Ambion). Real-time quan-
titative RT-PCR was conducted using one-step SYBR 
GreenER (Life Technologies) in a 7500 real-time PCR sys-
tem (Applied Biosystems) according to the manufacturer’s 
protocol. Each analysis was performed in triplicate. Rela-
tive expression levels were calculated using the compara-
tive cycle threshold (ΔΔCt) method using cyclophilin A as 
internal control. The primer sequences are summarized in 
Table 1.

ELISA assays

At the end of different experiments, culture medium of 
cells exposed to specific treatments was removed after 48 h, 
centrifuged at 500 g for 10 min at 4 °C, and supernatants 
stored at − 80 °C until used for assays.  E2 was measured by 
Human Estradiol ELISA Kit (Cusabio Biotech Co., LTD). 
High-sensitivity ELISA kits (IBL-international) were used 
for IL-6 and IL-8 detection in the culture medium. Each 
test was performed, according to manufacture’s protocol. 
The IL-6 assay detection range was 1.56–100 pg/ml, and 
the IL-8 assay detection range was 15.6–1000 pg/ml. Data 
from ELISA assays were normalized for number of viable 
cells at the end of each experiment and expressed in pg/ml.

Table 1  Human-specific primers pair sequence for real-time PCR

Gene Primers pair sequence Base pair

TNF-α F: CTT TGG AGT GAT CGG CCC CCC 
R: CCA TTG GCC AGG AGG GCA TT

107

IL-6 F: TTC GGT ACA TCC TCG ACG GC
R: TCT GCC AGT GCC TCT TTG CT

71

IL-8 F: TCC TGA TTT CTG CAG CTC TGTG 
R: GTC CAG ACA GAG CTC TCT TCCAT 

177

Cox-2 F: GCA CCC CGA CAT AGA GAG C
R: CTG CGG AGT GCA GTG TTC T

99

Esr2 F: AGC ACG GCT CCA TAT ACA TACC 
R: TGG ACC ACT AAA GGA GAA AGGT 

177

Cyp19a1 F: ACT ACA ACC GGG TAT ATG GAGAA 
R: TCG AGA GCT GTA ATG ATT GTGC 

119

AR F: TAC CAG CTC ACC AAG CTC CT
R: GAT GGG CTT GAC TTT CCC AG

154

ICAM-1 F: GGC CGG CCA GCT TAT ACA C
R: TAG ACA CTT GAG CTC GGG CA

146

iNOS F: ACC AGT ACG TTT GGC AAT GGAGA 
R: GAA CCG AGG GTA CAT GCT GGA 

114

Cyclophilin A F: GTC AAC CCC ACC GTG TTC TT
R: AAA GTT TTC TGC TGT TTT TGG 

AAT C

104
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Results

Preliminary experiments were performed to define optimal 
non-cytotoxic concentrations of  CdCl2 to use in the experi-
mental protocol and concentrations range previously found 
not to be cytotoxic in HUVECs were chosen [20]. The effects 

on cell viability were evaluated after 24 and 48 h of exposure 
to  CdCl2, resulting in a loss of cellular viability. The concen-
tration of 20 μM reduced cell viability in a time-dependent 
manner, inducing about 70% decrease after 48 h of  CdCl2 
exposure as compared to untreated cells (Fig. 1). Therefore, 
a  CdCl2 concentration range between 1 and 10 μM was used 
for all subsequent experiments.

Since our previous studies [2] have demonstrated that 
Cd can alter breast cancer cell homeostasis in vitro by an 
ER-mediated mechanism, experiments were performed to 
evaluate whether Cd could modify expression of estrogen 
receptor-β (esr2 or ERβ), androgen receptor (AR), and, 
also, aromatase isoenzyme, Cyp19a1. Interestingly,  CdCl2 
exposure of HUVECs induced a significant increase in esr2 
mRNA expression levels already after 6 h (Fig. 2a) with both 
concentrations used, returning towards basal levels after 24 h 
(Fig. 2d). Cyp19a1 mRNA expression levels were slightly 
higher after 6 h, showing a significant increased upon 24 h 
of  CdCl2 exposure vs untreated control (Fig. 2b, e). Moreo-
ver, Cd induced a significant dose-dependent decrease of 
AR mRNA expression levels in HUVECs already after 6 h 
(Fig. 2c) with a maximal effect after 24 h of treatment, as 
depicted in Fig. 2f. Accordingly, to gene expression data, 
a ~ twofold increase of ERβ protein level (Fig. 3a) and an 
evident dose-dependent decrease of AR protein expression 
were observed after 24 h of Cd exposure (Fig. 3b).

Fig. 1  Effects of Cadmium on HUVEC proliferation. HUVEC cells 
were incubated in growth medium in the absence or presence of 
1–20 μM CdCl2 for 24 and 48 h. Number of viable cells was quanti-
fied using the MTS assay, as described in “Materials and methods”

Fig. 2  Expression level of sex-
steroid hormones receptors and 
aromatase in HUVECs. Cells 
were exposed to  CdCl2 for 6 h 
(a–c) or 24 h (e–g). Cyclophilin 
A mRNA was used to normal-
ize the relative amount of 
mRNA. Results are presented 
as mean ± SD (n = 3) of three 
separate experiments. *p ≤ 0.05 
and **p ≤ 0.01 vs vehicle-
treated cells
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In addition, Western blot analysis indicated a time-
dependent increase of Cyp19a1 protein expression level 
(from 1.5- to 2.7-fold over control level) after 24 and 48 h 
exposure to 10 μM  CdCl2 (Fig. 3c). In accordance with the 
higher increase of Cyp19a1 protein expression level,  CdCl2 
exposure of HUVECs for 48 h determined a ~ 20% increase 
in  E2 concentrations in the supernatant (Fig. 3d), indicating 
also an increase in Cyp19a1 activity.

Since AR is subjected to regulation by several kinases 
through post-translational modifications on serine, threo-
nine, and tyrosine residues [34], experiments were per-
formed to evaluate putative effects of Cd on modulation 
of AR activation. In particular, phosphorylation of AR on 
ser308 and GSK-3β on ser-9 (an inactive form of GSK-3β) 
was evaluated, since phosphorylation of the AR on ser308 
by CDK11P58 represses its function [35, 36], indicat-
ing that an activation of Glycogen synthase kinase-3beta 
(GSK-3β) suppresses AR-mediated transcription [36]. Thus, 
HUVECs were exposed for 1 h to  CdCl2 which induced a 

dose-dependent increase of AR phosphorylation at ser308 
as well as a reduction of GSK-3β phosphorylation at ser9 
(Fig. 4a, b), indicating a decreased function of the recep-
tor. To verify a putative involvement of GSK3β activity 
in AR phosphorylation, AR-A014418 was used to inhibit 
GSK3β. HUVEC cells treated for 1 h with 10 μM  CdCl2, in 
the presence of AR-A014418, showed a ~ 40% decrease of 
 CdCl2-mediated AR phosphorylation on ser308 (Fig. 4c, d). 
Since GSK-3β phosphorylation is mediated by AKT activa-
tion, AKT phosphorylation on ser473 was also analysed in 
the same experimental condition. After 1 h,  CdCl2 induced 
a reduction of AKT phosphorylation on ser473 (Fig. 4c, d); 
on the contrary, the presence of GSK-3β inhibitor caused 
an increased AKT phosphorylation (Fig. 4c, d). To test 
AR functionality, DHT was use to stimulate cell, since the 
previous studies indicated that DHT induces endothelial 
cell proliferation via an AR-mediated mechanism [37]. As 
depicted in Fig. 4e, the results obtained in our experimental 
model confirmed that DHT (0.01 μM) induced HUVECs 

Fig. 3  Cadmium modulation 
of ERβ, AR, Cyp19a1 protein 
expression levels and  E2 release 
in culture medium. ERβ (a), AR 
(b), and Cyp19a1 (c) protein 
expression were analysed 
after 24 h of  CdCl2 exposure 
(5–10 μM). Protein expression 
was normalized by GAPDH 
expression level.  E2 level in 
cells’ supernatant (d) was 
evaluated by ELISA method 
after 24 h and 48 h treatment 
with 10 μM  CdCl2. Number of 
viable cells was used for the 
normalization of  E2 amount. 
Results shown in the histograms 
represent the mean ± SD of 
three independent experiments. 
*p ≤ 0.05 **p ≤ 0.01 compared 
to vehicle-treated cells
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proliferation after 48 h treatment, but DHT-induced cell pro-
liferation was blocked by the presence in the culture medium 
of  CdCl2 suggesting an antagonist-like effect of Cd on AR-
mediated signaling in endothelial cells.

Next, since systemic low chronic inflammation appears to 
play a role in atherogenic processes, and Cd exposure might 
increase vascular disease risk, likely inducing low-grade 
inflammation [38, 39], other experiments were performed 

Fig. 4  Cadmium modulation of AR-mediated signaling pathway. 
Histograms depict mean value of ERβ and AR protein levels normal-
ized to GAPDH level (a, b). Representative blot which depicts AR 
and its phosphorylation at serine 308  (PhARser308), GSK-3β, and its 
phosphorylation at serine 9 (PhGSK-3βser9) after 1 h of Cd exposure 
(c). Histograms represent the mean values of ratio of  PhARser308 nor-
malized over AR total protein level and the PhGSK-3βser9 level nor-
malized to GSK-3β total protein content (d). AR phosphorylation 

status in HUVECs after 1  h  CdCl2 (10  μM) treatment, in the pres-
ence of GSK-3β inhibitor, AR-A014418 (10 μM) (e). Effect of  CdCl2 
with or without DHT on HUVECs proliferation (f). Cells were incu-
bated with or without  CdCl2 (10 μM), DHT (0.01 μM), or  CdCl2 in 
the presence of DHT for 24 and 48  h. Number of viable cells was 
quantified using the MTS assay. Results are presented as mean ± SD 
of three separate experiments. *p ≤ 0.05 and **p ≤ 0.01 vs vehicle-
treated cells; §p ≤ 0.05 vs 10 μM  CdCl2-treated cells
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to evaluate whether Cd might stimulate markers of inflam-
mation, such as proinflammatory cytokines.

In particular, Interleukin-6 (IL-6), IL-8, and tumour 
necrosis factor-α (TNF-α) were evaluated, since they can 
amplify inflammatory response by activating release of nitric 
oxide (NO) and reactive oxygen species and promoting tis-
sue injury [40].

Exposure of HUVECs to CdCl2 (5–10  μM) for 6  h, 
induced a ~ threefold increase in TNF-α (Fig. 5a), a fivefold 
increase in IL-6 (Fig. 5c), and more then tenfold increase in 
IL-8 mRNA expression levels compared to vehicle-treated 
cells (Fig. 5e). Moreover, in the same experimental condi-
tion, it was also observed a twofold increase in Cyclooxy-
genase-2 (Cox-2, Fig. 5g), a key enzyme for inflammatory 
cytokine-induced angiogenesis [41]. After 24 h exposure 
HUVECs showed TNF-α—increased expression levels 
only after exposure to 10 μM  CdCl2 (Fig. 5b), whereas IL-6 
(Fig. 5d) and IL-8 mRNA (Fig. 4f) demonstrated increased 
expression levels with both  CdCl2 doses (three- and eight-
fold increase vs control cells, respectively). To further dis-
sect the events described above, and to evaluate whether 
the effect of Cd on ERβ-dependent signaling could affect 
modulation of proinflammatory cytokines, HUVECs were 
treated for 6 h with  CdCl2 or the natural ligand 17β-Estradiol 
 (E2) in the presence or absence of the selective inhibitor of 
ER β, PHTPP. At the end of Cd-exposure TNF-α, IL-6 and 
IL-8 mRNA level were evaluated. Whereas  E2 stimulation 
of HUVEC cells in the presence or absence of PHTPP did 
not modify cytokines mRNA expression level (Fig. 6), the 
presence in the medium of PHTPP completely blocked the 
Cd-induced increase of TNF-α and IL-6 (Fig. 6a, b) mRNA 
expression level and decreased ~ fivefold IL8 mRNA expres-
sion level (Fig. 6c), suggesting, at least in part, an ERβ-
mediated mechanism. These data were confirmed by the 
increase of cytokines levels in the supernatant after 48 h 
 CdCl2 exposure. Cd exposure of HUVECs in the presence of 
PHTTP resulted in a blockade of both IL-6 and IL8 increase 
(data not shown), while TNF-α levels in HUVEC superna-
tant cells were not detectable, likely due to the very low 
levels, which were below the ELISA kits sensitivity (data 
not shown).

To further characterize the intracellular mechanism(s) 
involved in these events, p38 MAPK pathway was studied, 
since it has been demonstrated that  CdCl2 (4 μM)-induced 
effects in HUVEC cells could be partially blocked by pre-
treatment with a p38 inhibitor [38]. Thus, after confirma-
tion of p38 MAPK activation induced by Cd in HUVECs 
(Fig. 7a), cells were exposed to  CdCl2 in presence or absence 
of the p38 inhibitor SB203580. Remarkably, the addition of 
p38 inhibitor SB203580 fully blocked the  CdCl2 augmenta-
tion of TNF-α, IL-6, and IL-8 mRNA expression after 24 h 
treatment (Fig. 7b), strongly suggesting a p38 involvement 
in the described events.

Fig. 5  Effects of Cadmium exposure on mRNA expression levels of 
inflammatory cytokine in HUVEC cells. RT-qPCR showing TNFα 
(a, b), IL-6 (c, d), and Cox-2 (e, f) mRNA levels of HUVECs’ cells 
grown in the presence or absence of  CdCl2 (5–10 μM). Cyclophilin 
for 6 and 24 h. Cyclophilin A mRNA was used to normalize the rela-
tive amount of mRNA. Results are presented as mean ± SD (n = 3) 
of three separate experiments. *p ≤ 0.05 and **p ≤ 0.01 vs vehicle-
treated cells
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Moreover, Thioredoxin reductase 1 (TrxR1), an intracel-
lular redox sensor and antioxidant enzyme, inducible by Cd 
trough activation of Nrf2 transcription factor and its bind-
ing to AU-rich elements (AREs) in TrxR1 gene promoter 
[42] was analysed. To evaluate potential involvement of 
TrxR1 protein in the Cd-induced HUVEC cell homeostasis 

alteration, TrxR1 protein expression was evaluated. After 
24 h of  CdCl2 exposure, HUVEC cells showed a twofold 
increase of TrxR1 protein expression that was blunted by 
the co-incubation of the p38 inhibitor SB203580 (Fig. 7c). 
In addition,  CdCl2 exposure (30 min) induced a relevant 
increase of ph-IkBα protein level that was blunted by 
SB203580 (Fig. 7d), suggesting that the Cd overexpression 
of TrxR1, could be modulated by NF-κB pathway trough 
p38 MAPK activation. Furthermore, since atheromatic pro-
cess is also linked to alterations of adhesion molecules and 
to iNOS, additional experiments were performed to evaluate 
whether Cd could alter the expression of these molecules. 
As depicted in Fig. 8, 24 h Cd exposure induced a dose-
dependent increase in ICAM-1 as well as, in iNOS expres-
sion ((Fig. 8a, b) strongly indicating a disruption of the 
homeostasis of these molecules as well.

Discussion

Cadmium is a potent environmental pollutant that acts as 
endocrine disruptor leading to altered homeostasis of many 
tissues and organs [22]. Herein, we demonstrate for the first 
time that Cd can alter sex hormone receptors, AR and ERβ, 
expression levels in human vascular endothelial cells, which 
might be in part responsible for this pollutant toxic athero-
genic effect. Indeed, our results confirm previous data indi-
cating that non-cytotoxic concentrations of Cd can induce 
a deregulation of endothelial intracellular signaling path-
ways, which play key roles in vascular cells functions [6, 
38], resulting in an important inflammatory state.

Interestingly, our novel results show that low doses of Cd 
induced a relevant down-regulation of AR expression level 
as well as an increased ERβ and Cyp19a1 expression levels, 
as well as an increased activity of Cyp19a1 as depicted by 
the modest increase in  E2 concentration in the supernatant of 
Cd-treated HUVECs. The mechanisms by which Cd affects 
AR signaling in endothelial cells processes, associated with 
proliferation and angiogenesis/repair, as well as with patho-
genic processes, such as atherosclerosis and neoplasia, have 
not been fully characterized before [43]. The tolerable cad-
mium exposure was set at 2.5 μg/kg body weight per month 
[4] and a urinary threshold of 5.24 μg/g creatinine [3], which 
could be easily reached by smoking cigarettes and by indus-
trial pollution. HUVECs provide a classic in vitro model 
system to study many aspects of endothelial functions and 
inflammation-related pathways in endothelium under normal 
and pathological conditions such as cardiovascular-related 
atherogenic complications.

The results of our study strongly suggest that Cd can inter-
fere with both AR and ERβ expression and function and this 
interference appears to increase levels of proinflammatory 

Fig. 6  Effect of ERβ blockage on proinflammatory cytokines expres-
sion. RT-qPCR showing TNFα (a), IL-6 (b), and IL-8 (c) mRNA 
levels of HUVECs cells exposed to  CdCl2 (10 μM) or  E2 (0.01 μM) 
in the presence or absence of PHTPP (5 μM), a selective inhibitor of 
ERβ
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cytokines explaining, at least in part, the atherogenic effect 
which have been deputed to this endocrine disruptor.

Interestingly, several mechanisms have been suggested 
to explain the role of this endocrine disruptor in promoting 
vascular ECs dysfunctions. Among all, it has been suggested 

a potential role-played by an interaction between cytokines 
and AR expression in human endothelial cells [43, 44]. 
Interestingly, Wang et al. [44] indicated that IL-6 secreted by 
ECs appears to be a key mediator for AR down-regulation in 
ECs–prostate cancer (PC) cells inhibiting AR functions and 

Fig. 7  Effects of p38 inhibitor on CdCl2-dependent inflammation 
and TrxR1 overexpression. Representative blots from phospho-p38 
MAPK and total p38 MAPK, from protein samples of HUVECs 
exposed to 5–10  μM  CdCl2 for 2  h (a). Cells were pretreated for 
30  min with p38 MAPK inhibitor SB203580 (10  μM) and then 
exposed to  CdCl2 (5-10 μM) in the presence or absence of the inhibi-
tor. Histograms represent RT-qPCR showing TNFα, IL-6, IL-8 and 
(b) mRNA levels of  CdCl2-exposed cells in the presence or absence 

of the inhibitor for 24  h. Representative image of the Western blot 
analysis showing protein expression of TrxR1 (c) and Phospho-
IkBα (d). Amount of each protein was calculated by normalizing to 
GAPDH protein levels. Results are shown as mean ± SD of at least 
three different experiments. *p ≤ 0.05 and **p ≤ 0.01 vs vehicle-
treated cells; °p ≤ 0.05 vs 5  μM  CdCl2-treated cells; §§p ≤ 0.01 and 
§p ≤ 0.05 vs 10 μM CdCl2-treated cells



736 Journal of Endocrinological Investigation (2019) 42:727–739

1 3

inducing PC metastasis. We found an increase of AR phos-
phorylation on ser308, associated with a blockade of AR 
activity [35]. In addition, 1 h Cd exposure caused a reduc-
tion of GSK-3β phosphorylation. The strong reduction in 
AR phosphorylation in the presence of a GSK-3β inhibitor 
confirmed that this event was, at least in part, related to an 
increase in GSK-3β activation.

GSK-3β is a serine/threonine kinase with a key role 
in angiogenesis regulation [45] and in the inflammatory 
response in vascular ECs [46, 47]. Furthermore, its activa-
tion has been correlated with a suppression of AR activ-
ity in prostate cells [36]. GSK-3β is a known substrate of 
PI3 K/Akt signaling pathway, which usually inhibits GSK-3 
by serine phosphorylation [47]. Consistent with Cd-induced 
GSK-3β activation, our results depict a reduction of Akt 
phosphorylation at ser473 in Cd-treated HUVECs.

On the contrary, Kim et al. [48] reported an activation 
of Akt/GSK-3β in SH-SY5Y cells after 6–24  h 25  μM 
Cd exposure, suggesting that Akt/GSK-3β pathway could 
play a survival role in Cd-induced cell death. However, we 
can hypothesize that the discrepancy with our data might 

indicate differences in the regulation of Akt/GSK-3 β path-
way depending on cell type, concentration, and length of Cd 
treatment. It is worth to mention that the effects of Cd are 
strongly dose-dependent [20] and opposite effects have also 
been shown when different doses of Cd are used [49]. Inter-
estingly, our results indicate that low-dose Cd exposure can 
affect AR activity trough an Akt/GSK-3β-dependent mecha-
nism in endothelial cells in vitro. As the previous studies 
have also suggested [37], our results further demonstrate 
that Cd abolished DHT-induced cell proliferation by an AR-
dependent mechanism, as depicted in “Result”.

In addition, Cd is a potent prooxidative stressor, because 
it weakens the most important antioxidant scavenger systems 
including glutathione, thioredoxin, superoxide dismutase, 
and catalase [15, 50–52] and it inhibits mitochondrial 
electron transport chain inducing hydrogen peroxide and 
peroxide ions generation causing a modification of redox-
signaling transduction pathways leading to oxidative stress 
induction [53–55]. In turn, Cd-induced oxidative stress 
enhances lipid peroxidation causing a lipid and lipoprotein 
profile derangement, as demonstrated in preclinical animal 
models [9, 15, 16, 56, 57]. Sakurai et al. [58] have indeed 
demonstrated that overexpression of TrxR1 enhanced TNF-
α- induced DNA-binding activity of NF-kB in endothelial 
cells, suggesting that TrxR1 might act as a positive regulator 
of NF-kB and might play a pivotal role in cellular inflamma-
tory responses [58]. Recent studies indicate that Cd exposure 
alters lipid metabolism in humans and elevated blood Cd 
concentration is associated with prevalence of dyslipidaemia 
[59], contributing to initiate or promote the process linked 
to the development of atheromatic lesions [13]. Since the 
results presented in our manuscript also indicate alteration 
of adhesion molecules upon Cd exposure, this could be 
an additional mechanism linked to the atherogenic effect 
induced by this endocrine disruptor.

Of interest, in vitro and in vivo studies have indicated a 
relationship between Cd exposure and inflammation corre-
lated with several vascular diseases [39, 60–62]. Sub-toxic 
Cd concentrations trigger proinflammatory response by 
modulating production and release of cytokines and inflam-
matory molecules [38, 63], key inflammatory components of 
atheromatic process [39, 64]. Indeed, HUVECs exposure to 
Cd resulted in an increase of TNF-α, IL-6, and IL-8 mRNA 
expression levels. This effect was blocked by co-incubation 
in the presence of ERβ inhibitor, suggesting a direct sex-
steroid receptor-dependent mechanism.

Our present data confirm these previous published results, 
further suggesting that this environmental pollutant could 
induce the above-mentioned vascular system modification by 
an endocrine-disrupting mechanism, altering the sex-steroid 
receptor levels and function.

Furthermore, our data suggest that Cd alters physiologi-
cal cellular homeostasis of endothelial cells by disrupting 

Fig. 8  Effects of 24 h Cadmium exposure on ICAM-1 (a) and iNOS 
(b) expression in HUVEC cells. Cyclophilin A mRNA was used 
to normalize the relative amount of mRNA. Results are presented 
as mean ± SD (n = 3) of three separate experiments. *p ≤ 0.05 and 
**p ≤ 0.01 vs vehicle-treated cells
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intracellular pathways such as p38 and Thioredoxin reduc-
tase-1. For instance, Phuagkhaopong et al. [65] demonstrated 
that Cd stimulated IL-6 and IL-8 expression and release in 
human astrocytes by activation of the p38 and NF-kB path-
ways [65], well-known pathways mediating upregulation of 
cyclooxygenase-2 (Cox-2) in response to stimulation with 
TNF-α [66]. In its inactive form NF-kB is sequestered in cyto-
plasm compartment with IkB complex, but, once activated, 
IkB phosphorylation, activates NF-KB. It was demonstrated 
that NF-κB signaling modulates pro-atherogenic program in 
endothelial cells [67] and its activity is sensitive to inhibition 
of p38 [68]. In accordance with these previous data, our results 
showed an increase of IkB phosphorylation in Cd-treated cells, 
likely suggesting an NF-kB activation pathway involvement as 
also indicated by the abrogation of Cd-induced IkB phospho-
rylation by the presence of SB203580.

In addition, SB203580 was also able to blunt Cd-induced 
TrxR1 protein expression levels. Thioredoxin reductase-1 
(TrxR1) is a pivotal intracellular redox sensor and antioxidant 
enzyme which can be induced by Cd trough the activation of 
Nrf2 transcription factor and its binding to ARE in the TrxR1 
gene promoter [42]. Overexpression of TrxR1 enhanced 
TNF-α -induced DNA-binding activity of NF-kB in endothe-
lial cells, suggesting that TrxR1 may act as a positive regula-
tor of NF-kB playing a pivotal role in cellular inflammatory 
response [58]. Thus, it might be hypothesized that Cd over-
expression of TrxR1, could be modulated by NF-κB pathway 
trough p38 MAPK activation.

In conclusion, our study demonstrates for the first time that 
Cd alters AR and ER expression and function in endothelial 
cells, likely affecting steroid hormone receptor signaling linked 
to a proinflammatory state possibly leading to endothelial cell 
injury and vascular dysfunction. This alteration might be, at 
least in part, a novel described mechanism of both gender-
specific atherogenic damages induced by endocrine disruptors 
and, thus, to the induction of atherogenic events with increased 
risk of cardiovascular diseases in individuals exposed to envi-
ronmental pollutants.
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