Through an overview of the history of the disease, Narrative Medicine (NM) aims to define and implement an effective, appropriate and shared treatment path. In the context of COVID-19, several blogs were produced, among those the “Sindrome Post COVID-19” contains narratives related to the COVID-19 pandemic. In the present study, different analysis techniques were applied to a dataset extracted from such “Sindrome Post COVID-19” blog. The first step of the analysis was to test the VADER polarity extraction tool. Then the analysis was extended through the application of Topic Modeling, using Latent Dirichlet Allocation (LDA). The results were compared to verify the correlations between the polarity score obtained through VADER and the extracted topics through LDA. The results showed a predominantly negative polarity consistent with the mostly negative topics represented by words on post virus symptoms. The results obtained derive from three different approaches applied to the COVID narrative dataset. The first part of the analysis corresponds to polarity extraction using the VADER software, where, from the score, polarity was inferred by dichotomizing the overall score. In the second part, topic modeling through LDA was applied, extracting a number of topics equal to three. The third phase is based on the objective of finding a qualitative relationship between the polarity extracted with VADER and the latent topics with LDA, considering it a semi-supervised problem. In the end, the presence of polarized topics was explored and thus a correspondence between sentiment and topic was found.

Investigating the Sentiment in Italian Long-COVID Narrations

Martinis M. C.;Scarpino I.;Zucco C.;Cannataro M.
2023-01-01

Abstract

Through an overview of the history of the disease, Narrative Medicine (NM) aims to define and implement an effective, appropriate and shared treatment path. In the context of COVID-19, several blogs were produced, among those the “Sindrome Post COVID-19” contains narratives related to the COVID-19 pandemic. In the present study, different analysis techniques were applied to a dataset extracted from such “Sindrome Post COVID-19” blog. The first step of the analysis was to test the VADER polarity extraction tool. Then the analysis was extended through the application of Topic Modeling, using Latent Dirichlet Allocation (LDA). The results were compared to verify the correlations between the polarity score obtained through VADER and the extracted topics through LDA. The results showed a predominantly negative polarity consistent with the mostly negative topics represented by words on post virus symptoms. The results obtained derive from three different approaches applied to the COVID narrative dataset. The first part of the analysis corresponds to polarity extraction using the VADER software, where, from the score, polarity was inferred by dichotomizing the overall score. In the second part, topic modeling through LDA was applied, extracting a number of topics equal to three. The third phase is based on the objective of finding a qualitative relationship between the polarity extracted with VADER and the latent topics with LDA, considering it a semi-supervised problem. In the end, the presence of polarized topics was explored and thus a correspondence between sentiment and topic was found.
2023
9783031360206
9783031360213
Latent Dirichlet Allocation
Narrative Medicine
Polarity Detection
Sentiment Analysis
Topic Modeling
VADER
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/101267
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact