Multiple myeloma (MM) is tightly dependent on inflammatory bone marrow microenvironment. IL-17 producing CD4+ T cells (Th17) sustain MM cells growth and osteoclasts-dependent bone damage. In turn, Th17 differentiation relies on inflammatory stimuli. Here, we investigated the role of miR-21 in Th17-mediated MM tumor growth and bone disease. We found that early inhibition of miR-21 in naive T cells (miR-21i-T cells) impaired Th17 differentiation in vitro and abrogated Th17-mediated MM cell proliferation and osteoclasts activity. We validated these findings in NOD/SCID-g-NULL mice, intratibially injected with miR-21i-T cells and MM cells. A Pairwise RNAseq and proteome/phosphoproteome analysis in Th17 cells demonstrated that miR-21 inhibition led to upregulation of STAT-1/-5a-5b, STAT-3 impairment and redirection of Th17 to Th1/Th2 like activated/polarized cells. Our findings disclose the role of miR-21 in pathogenic Th17 activity and open the avenue to the design of miR-21-targeting strategies to counteract microenvironment dependence of MM growth and bone disease.

miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma

Rossi M.
;
Altomare E.;Botta C.;Gallo Cantafio M. E.;Caracciolo D.;Gaspari M.;Taverna D.;Bertucci B.;Scumaci D.;Arbitrio M.;Amodio N.;Tagliaferri P.;Tassone P.
2020-01-01

Abstract

Multiple myeloma (MM) is tightly dependent on inflammatory bone marrow microenvironment. IL-17 producing CD4+ T cells (Th17) sustain MM cells growth and osteoclasts-dependent bone damage. In turn, Th17 differentiation relies on inflammatory stimuli. Here, we investigated the role of miR-21 in Th17-mediated MM tumor growth and bone disease. We found that early inhibition of miR-21 in naive T cells (miR-21i-T cells) impaired Th17 differentiation in vitro and abrogated Th17-mediated MM cell proliferation and osteoclasts activity. We validated these findings in NOD/SCID-g-NULL mice, intratibially injected with miR-21i-T cells and MM cells. A Pairwise RNAseq and proteome/phosphoproteome analysis in Th17 cells demonstrated that miR-21 inhibition led to upregulation of STAT-1/-5a-5b, STAT-3 impairment and redirection of Th17 to Th1/Th2 like activated/polarized cells. Our findings disclose the role of miR-21 in pathogenic Th17 activity and open the avenue to the design of miR-21-targeting strategies to counteract microenvironment dependence of MM growth and bone disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/62907
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact