Brucellosis caused by Brucella melitensis is a zoonosis frequently reported in the Mediterranean and Middle-East regions and responsible for important economic losses and reduced animal welfare. To date, current strategies applied to control or eradicate the disease relies on diagnostic tests that suffer from limited specificity in non-vaccinated animals; while prophylactic measures, when applied, use a live attenuated bacterial strain characterized by residual virulence on adult pregnant animals and difficulties in distinguishing vaccinated from infected animals. To overcome these issues, studies are desired to elucidate the bacterial biology and the pathogenetic mechanisms of both the vaccinal strain and the pathogenic strains. Proteomics has a potential in tackling issues of One-Health concern; here, we employed label-free shotgun proteomics to investigate the protein repertoire of the vaccinal strain B. melitensis Rev.1 and compare it with the proteome of the Brucella melitensis 16 M, a reference strain representative of B. melitensis field strains. Comparative proteomics profiling underlines common and diverging traits between the two strains. Common features suggest the potential biochemical routes responsible for the residual virulence of the vaccinal strain, whilst the diverging traits are suggestive biochemical signatures to be further investigated to provide an optimized diagnostic capable of discriminating the vaccinated from infected animals. The data presented in this study are openly available in PRIDE data repository at https://www.ebi.ac.uk/pride/, reference number PXD022472.

Comparative proteomics of Brucella melitensis is a useful toolbox for developing prophylactic interventions in a One-Health context

Tilocca B.
Conceptualization
;
Bonizzi L.;Urbani A.;Roncada P.
2021-01-01

Abstract

Brucellosis caused by Brucella melitensis is a zoonosis frequently reported in the Mediterranean and Middle-East regions and responsible for important economic losses and reduced animal welfare. To date, current strategies applied to control or eradicate the disease relies on diagnostic tests that suffer from limited specificity in non-vaccinated animals; while prophylactic measures, when applied, use a live attenuated bacterial strain characterized by residual virulence on adult pregnant animals and difficulties in distinguishing vaccinated from infected animals. To overcome these issues, studies are desired to elucidate the bacterial biology and the pathogenetic mechanisms of both the vaccinal strain and the pathogenic strains. Proteomics has a potential in tackling issues of One-Health concern; here, we employed label-free shotgun proteomics to investigate the protein repertoire of the vaccinal strain B. melitensis Rev.1 and compare it with the proteome of the Brucella melitensis 16 M, a reference strain representative of B. melitensis field strains. Comparative proteomics profiling underlines common and diverging traits between the two strains. Common features suggest the potential biochemical routes responsible for the residual virulence of the vaccinal strain, whilst the diverging traits are suggestive biochemical signatures to be further investigated to provide an optimized diagnostic capable of discriminating the vaccinated from infected animals. The data presented in this study are openly available in PRIDE data repository at https://www.ebi.ac.uk/pride/, reference number PXD022472.
2021
Brucella melitensis 16M
DIVA strategy
Prophylaxis
Proteomics
Residual virulence
Rev.1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/73344
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact