Human cutaneous melanoma is an aggressive and chemotherapy-resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study aimed to characterize the in-vitro antimelanoma activity of AM251. The BRAF V600E mutant melanoma cell line, A375, was used as an in-vitro model system. Characterization tools included a cell viability assay, nuclear morphology assessment, gene expression, western blot, flow cytometry with Annexin V-FITC/7-AAD double staining, cell cycle analyses, and measurements of changes in intracellular cAMP and calcium concentrations. AM251 exerted a marked cytotoxic effect against A375 human melanoma cells with potency comparable with that observed for cisplatin without significant changes in the human dermal fibroblasts viability. AM251, at a concentration that approximates the IC50, downregulated genes encoding antiapoptotic proteins (BCL2 and survivin) and increased transcription levels of proapoptotic BAX, induced alteration of Annexin V reactivity, DNA fragmentation, chromatin condensation in the cell nuclei, and G2/M phase arrest.AM251 also induced a 40% increase in the basal cAMP levels, but it did not affect intracellular calcium concentrations. The involvement of GPR55, TRPA1, and COX-2 in the AM251 mechanism of action was excluded. The combination of AM251 with celecoxib produced a synergistic antitumor activity, although the mechanism underlying this effect remains to be elucidated. This study provides the first evidence of a proapoptotic effect and G2/M cell cycle arrest of AM251 on A375 cells. This compound may be a potential prototype for the development of promising diarylpyrazole derivatives to be evaluated in human cutaneous melanoma.

AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells

CARPI, SARA;
2015-01-01

Abstract

Human cutaneous melanoma is an aggressive and chemotherapy-resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study aimed to characterize the in-vitro antimelanoma activity of AM251. The BRAF V600E mutant melanoma cell line, A375, was used as an in-vitro model system. Characterization tools included a cell viability assay, nuclear morphology assessment, gene expression, western blot, flow cytometry with Annexin V-FITC/7-AAD double staining, cell cycle analyses, and measurements of changes in intracellular cAMP and calcium concentrations. AM251 exerted a marked cytotoxic effect against A375 human melanoma cells with potency comparable with that observed for cisplatin without significant changes in the human dermal fibroblasts viability. AM251, at a concentration that approximates the IC50, downregulated genes encoding antiapoptotic proteins (BCL2 and survivin) and increased transcription levels of proapoptotic BAX, induced alteration of Annexin V reactivity, DNA fragmentation, chromatin condensation in the cell nuclei, and G2/M phase arrest.AM251 also induced a 40% increase in the basal cAMP levels, but it did not affect intracellular calcium concentrations. The involvement of GPR55, TRPA1, and COX-2 in the AM251 mechanism of action was excluded. The combination of AM251 with celecoxib produced a synergistic antitumor activity, although the mechanism underlying this effect remains to be elucidated. This study provides the first evidence of a proapoptotic effect and G2/M cell cycle arrest of AM251 on A375 cells. This compound may be a potential prototype for the development of promising diarylpyrazole derivatives to be evaluated in human cutaneous melanoma.
2015
A375 cells
AM251
apoptosis
Bax
Bcl-2
cell cycle
GPR55
melanoma
survivin
TRPA1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/87671
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 20
social impact