Background: Magnesium (Mg2+) plays a fundamental role in various physiological processes, including neuromuscular function, glucose metabolism, cardiovascular regulation, and bone health. Despite its significance, the influence of sex on magnesium metabolism, requirements, and health outcomes remains unexplored. The aim of this review is to analyze sex-based differences in magnesium homeostasis, with a particular focus on hormonal regulation, body composition, and disease susceptibility. Methods: This narrative review, based on a non-systematic MEDLINE search conducted in January 2025, prioritized clinical trials from the past 15 years on human subjects and explored gender-specific aspects of magnesium intake, status, metabolism, and supplementation. Results: Hormonal fluctuations, particularly variations in estrogen levels, affect magnesium absorption, distribution, and retention, thereby influencing magnesium balance across different life stages such as puberty, pregnancy, and menopause. Additionally, dietary intake and lifestyle factors often differ between men and women, further impacting magnesium status. Emerging evidence suggests that suboptimal magnesium levels may differentially contribute to conditions such as osteoporosis, cardiovascular disease, and metabolic disorders in each sex. Conclusions: In conclusion, acknowledging sex-specific differences in magnesium metabolism is essential for developing personalized dietary guidelines and therapeutic strategies. Tailored nutritional approaches could significantly improve magnesium status, enhance overall health, and reduce the burden of chronic diseases linked to magnesium imbalance.

Magnesium: Exploring Gender Differences in Its Health Impact and Dietary Intake

Mazza, Elisa;Maurotti, Samantha
;
Ferro, Yvelise;Castagna, Alberto;Sciacqua, Angela;Pujia, Arturo;Montalcini, Tiziana
2025-01-01

Abstract

Background: Magnesium (Mg2+) plays a fundamental role in various physiological processes, including neuromuscular function, glucose metabolism, cardiovascular regulation, and bone health. Despite its significance, the influence of sex on magnesium metabolism, requirements, and health outcomes remains unexplored. The aim of this review is to analyze sex-based differences in magnesium homeostasis, with a particular focus on hormonal regulation, body composition, and disease susceptibility. Methods: This narrative review, based on a non-systematic MEDLINE search conducted in January 2025, prioritized clinical trials from the past 15 years on human subjects and explored gender-specific aspects of magnesium intake, status, metabolism, and supplementation. Results: Hormonal fluctuations, particularly variations in estrogen levels, affect magnesium absorption, distribution, and retention, thereby influencing magnesium balance across different life stages such as puberty, pregnancy, and menopause. Additionally, dietary intake and lifestyle factors often differ between men and women, further impacting magnesium status. Emerging evidence suggests that suboptimal magnesium levels may differentially contribute to conditions such as osteoporosis, cardiovascular disease, and metabolic disorders in each sex. Conclusions: In conclusion, acknowledging sex-specific differences in magnesium metabolism is essential for developing personalized dietary guidelines and therapeutic strategies. Tailored nutritional approaches could significantly improve magnesium status, enhance overall health, and reduce the burden of chronic diseases linked to magnesium imbalance.
2025
magnesium; gender differences; sex-specific metabolism; magnesium bioavailability; hormonal regulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/108360
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact