The process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversification is still ongoing and has very recently led to the emergence of a new variant of concern (VOC), defined as Omicron or B.1.1.529. Omicron VOC is the most divergent variant identified so far and has generated immediate concern for its potential capability to increase SARS-CoV-2 transmissibility and, more worryingly, to escape therapeutic and vaccine-induced antibodies. Nevertheless, a clear definition of the Omicron VOC mutational spectrum is still missing. Herein, we provide a comprehensive definition and functional characterization (in terms of infectivity and/or antigenicity) of mutations characterizing the Omicron VOC. In particular, 887,475 SARS-CoV-2 Omicron VOC whole-genome sequences were retrieved from the GISAID database and used to precisely define its specific patterns of mutations across the different viral proteins. In addition, the functional characterization of Omicron VOC spike mutations was finely discussed according to published manuscripts. Lastly, residues characterizing the Omicron VOC and the previous four VOCs (Alpha, Beta, Gamma, and Delta) were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, our study will assist with deciphering the Omicron VOC mutational profile and will shed more light on its clinical implications. This is critical considering that Omicron VOC is currently the predominant variant worldwide. IMPORTANCE The Omicron variant of concern (VOC) has a peculiar spectrum of mutations characterized by the acquisition of mutations or deletions rarely detected in previously identified variants, particularly in the spike glycoprotein. Such mutations, mostly residing in the receptor-binding domain, could play a pivotal role in enhancing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity (by increasing binding affinity for ACE2), jeopardizing spike recognition by therapeutic and vaccine-induced antibodies and causing diagnostic assay failure. To our knowledge, this is one of the first exhaustive descriptions of newly emerged mutations underlying the Omicron VOC and its biological and clinical implications.

Update on SARS-CoV-2 Omicron Variant of Concern and Its Peculiar Mutational Profile

Ambrosio, Francesca Alessandra;Costa, Giosuè;Artese, Anna;Alcaro, Stefano;
2022-01-01

Abstract

The process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversification is still ongoing and has very recently led to the emergence of a new variant of concern (VOC), defined as Omicron or B.1.1.529. Omicron VOC is the most divergent variant identified so far and has generated immediate concern for its potential capability to increase SARS-CoV-2 transmissibility and, more worryingly, to escape therapeutic and vaccine-induced antibodies. Nevertheless, a clear definition of the Omicron VOC mutational spectrum is still missing. Herein, we provide a comprehensive definition and functional characterization (in terms of infectivity and/or antigenicity) of mutations characterizing the Omicron VOC. In particular, 887,475 SARS-CoV-2 Omicron VOC whole-genome sequences were retrieved from the GISAID database and used to precisely define its specific patterns of mutations across the different viral proteins. In addition, the functional characterization of Omicron VOC spike mutations was finely discussed according to published manuscripts. Lastly, residues characterizing the Omicron VOC and the previous four VOCs (Alpha, Beta, Gamma, and Delta) were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, our study will assist with deciphering the Omicron VOC mutational profile and will shed more light on its clinical implications. This is critical considering that Omicron VOC is currently the predominant variant worldwide. IMPORTANCE The Omicron variant of concern (VOC) has a peculiar spectrum of mutations characterized by the acquisition of mutations or deletions rarely detected in previously identified variants, particularly in the spike glycoprotein. Such mutations, mostly residing in the receptor-binding domain, could play a pivotal role in enhancing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity (by increasing binding affinity for ACE2), jeopardizing spike recognition by therapeutic and vaccine-induced antibodies and causing diagnostic assay failure. To our knowledge, this is one of the first exhaustive descriptions of newly emerged mutations underlying the Omicron VOC and its biological and clinical implications.
2022
SARS-CoV-2
emerging variants
mutations
omicron
pandemic
variant of concern
Mutation
SARS-CoV-2
Spike Glycoprotein, Coronavirus
Vaccines
COVID-19
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/77283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 36
social impact