The targeting of HIV-1 integrase (IN) for the design of novel antiviral compounds has until now proceeded slowly, mainly due to the lack of three-dimensional structures reporting detail interactions between IN and its DNA substrates as well as the complete enzyme with its three domains. Recently, we have proposed that Tn5 transposase (Tnp) can be used as a useful surrogate model for IN in attempt to address the potential binding modes of Integrase Strand Transfer Inhibitors. In order to strengthen our hypothesis, molecular dynamics simulations of IN inhibitors bound to Tn5 Trip active site are now reported. A comparison of the obtained results with well documented specific mutations associated with resistance to HIV-1 IN inhibitors confirmed that Tn5 Tnp can provide a valuable platform for the structure-based discovery of new ligands
Tn5 transposase as a useful platform to simulate HIV-1 integrase inhibitor binding mode
ORTUSO F;ALCARO S
2007-01-01
Abstract
The targeting of HIV-1 integrase (IN) for the design of novel antiviral compounds has until now proceeded slowly, mainly due to the lack of three-dimensional structures reporting detail interactions between IN and its DNA substrates as well as the complete enzyme with its three domains. Recently, we have proposed that Tn5 transposase (Tnp) can be used as a useful surrogate model for IN in attempt to address the potential binding modes of Integrase Strand Transfer Inhibitors. In order to strengthen our hypothesis, molecular dynamics simulations of IN inhibitors bound to Tn5 Trip active site are now reported. A comparison of the obtained results with well documented specific mutations associated with resistance to HIV-1 IN inhibitors confirmed that Tn5 Tnp can provide a valuable platform for the structure-based discovery of new ligandsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.