This chapter focuses on computational techniques for identifying and optimizing lead molecules, with a special emphasis on natural compounds. A number of case studies have been specifically discussed, such as the case of the naphthyridine scaffold, discovered through a structure-based virtual screening (SBVS) and proposed as the starting point for further lead optimization process, to enhance its telomeric RNA selectivity. Another example is the case of Liphagal, a tetracyclic meroterpenoid extracted from Aka coralliphaga, known as PI3Kα inhibitor, provide an evidence for the design of new active congeners against PI3Kα using molecular dynamics (MD) simulations. These are only two of the numerous examples of the computational techniques' powerful in drug design and drug discovery fields. Finally, the design of drugs that can simultaneously interact with multiple targets as a promising approach for treating complicated diseases has been reported. An example of polypharmacological agents are the compounds extracted from mushrooms identified by means of molecular docking experiments. This chapter may be a useful manual of molecular modeling techniques used in the lead-optimization and lead identification processes.

Computer-based techniques for lead identification and optimization i: Basics

Maruca A.;Ambrosio F. A.;Lupia A.;Romeo I.;Rocca R.;Moraca F.;Talarico C.;Bagetta D.;Catalano R.;Costa G.;Artese A.;Alcaro S.
2019-01-01

Abstract

This chapter focuses on computational techniques for identifying and optimizing lead molecules, with a special emphasis on natural compounds. A number of case studies have been specifically discussed, such as the case of the naphthyridine scaffold, discovered through a structure-based virtual screening (SBVS) and proposed as the starting point for further lead optimization process, to enhance its telomeric RNA selectivity. Another example is the case of Liphagal, a tetracyclic meroterpenoid extracted from Aka coralliphaga, known as PI3Kα inhibitor, provide an evidence for the design of new active congeners against PI3Kα using molecular dynamics (MD) simulations. These are only two of the numerous examples of the computational techniques' powerful in drug design and drug discovery fields. Finally, the design of drugs that can simultaneously interact with multiple targets as a promising approach for treating complicated diseases has been reported. An example of polypharmacological agents are the compounds extracted from mushrooms identified by means of molecular docking experiments. This chapter may be a useful manual of molecular modeling techniques used in the lead-optimization and lead identification processes.
2019
drug discovery
drug-like properties
molecular dynamics
molecular recognition
pharmacophore models
virtual screening
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/85817
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact